
CSE 484: Computer Security and Privacy

Cryptography
[Symmetric Encryption]

Winter 2021

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials
...

mailto:dkohlbre@cs.washington.edu

How Cryptosystems Work Today

• Layered approach: Cryptographic protocols (like “CBC mode encryption”) built on
top of cryptographic primitives (like “block ciphers”)

• Flavors of cryptography: Symmetric (private key) and asymmetric (public key)

• Public algorithms (Kerckhoff’s Principle)

• Security proofs based on assumptions (not this course)

• Be careful about inventing your own! (If you just want to use some crypto in your
system, use vetted libraries!)

1/22/2021 CSE 484 - Winter 2021 2

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Hard concept to understand, and revolutionary! Inventors won Turing Award
☺

1/22/2021 CSE 484 - Winter 2021 3

Symmetric Setting

1/22/2021 CSE 484 - Winter 2021 4

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

Asymmetric Setting

1/22/2021 CSE 484 - Winter 2021 5

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

1/22/2021 CSE 484 - Winter 2021 6

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

1/22/2021 CSE 484 - Winter 2021 7

Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)

1/22/2021 CSE 484 - Winter 2021 8

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

• Problem: don’t use rand() for security-critical applications!
• Given a few sample outputs, you can predict subsequent ones

1/22/2021 CSE 484 - Winter 2021 9

1/22/2021 CSE 484 - Winter 2021 10

1/22/2021 CSE 484 - Winter 2021 11

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all
system updates

1/22/2021 CSE 484 - Winter 2021 12

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

Another real world example

random(){

byte ret = buffer[index];

if(index == 255){

index = 0;

}

else{

index++;

}

}

1/22/2021 CSE 484 - Winter 2021 13

byte buffer[256];

int index = 0;

setup(){

for (i=0; i < 256; i++){

buffer[i] = i;

}

shuffle_array(buffer);

}

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically
secure pseudorandom numbers”

• Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

1/22/2021 CSE 484 - Winter 2021 14

Obtaining Pseudorandom Numbers

• Linux:
• /dev/random

• /dev/urandom - nonblocking, possibly less entropy

• getrandom() – syscall!

• Internally:
• Entropy pool gathered from multiple sources

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs

1/22/2021 CSE 484 - Winter 2021 15

Obtaining Random Numbers

• Better idea:
• AMD/Intel’s on-chip random number generator

• RDRAND

• Hopefully no hardware bugs!

1/22/2021 CSE 484 - Winter 2021 16

Now: Symmetric Encryption

1/22/2021 CSE 484 - Winter 2021 17

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.

1/22/2021 CSE 484 - Winter 2021 18

?

Ignore for now: How is this achieved in practice??

One weird trick to hide your bits

• XOR!
• Just XOR with a random bit!

• Why?
• Uniform output

• Independent of ‘message’ bit

1/22/2021 CSE 484 - Winter 2021 19

One-Time Pad

1/22/2021 CSE 484 - Winter 2021 20

= 10111101…

= 00110010…

10001111…
00110010… =

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

• Easy to compute
• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

• As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s

computational resources

• …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?

1/22/2021 CSE 484 - Winter 2021 21

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused

1/22/2021 CSE 484 - Winter 2021 22

Dangers of Reuse

1/22/2021 CSE 484 - Winter 2021 23

= 00000000…

= 00110010…

00110010…
00110010… =

00000000…P1

C1

= 11111111…

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) =
(P1P2)(KK) = P1P2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

1/22/2021 CSE 484 - Winter 2021 24

Integrity?

1/22/2021 CSE 484 - Winter 2021 25

= 10111101…

= 00110010…

10001111…
00110010… =

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily change it to something else

1/22/2021 CSE 484 - Winter 2021 26

Reducing Key Size

• What to do when it is infeasible to pre-share huge random keys?
• When one-time pad is unrealistic…

• Use special cryptographic primitives: block ciphers,
stream ciphers
• Single key can be re-used (with some restrictions)

• Not as theoretically secure as one-time pad

1/22/2021 CSE 484 - Winter 2021 27

Stream Ciphers

• One-time pad: Ciphertext(Key,Message)=MessageKey

• Key must be a random bit sequence as long as message

• Idea: replace “random” with “pseudo-random”
• Use a pseudo-random number generator (PRNG)

• PRNG takes a short, truly random secret seed and
expands it into a long “random-looking” sequence
• E.g., 128-bit seed into a 106-bit

pseudo-random sequence

• Ciphertext(Key,Msg)=MsgPRNG(Key)
• Message processed bit by bit (like one-time pad)

1/22/2021 CSE 484 - Winter 2021 28

No efficient algorithm can tell
this sequence from truly random

Block Ciphers

• Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES

• Each key defines a different permutation

• Same key is reused for each block (can use short keys)

1/22/2021 CSE 484 - Winter 2021 29

Plaintext

Ciphertext

block
cipherKey

