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How Cryptosystems Work Today

• Layered approach: Cryptographic protocols (like “CBC mode encryption”) built on 
top of cryptographic primitives (like “block ciphers”) 

• Flavors of cryptography: Symmetric (private key) and asymmetric (public key)

• Public algorithms (Kerckhoff’s Principle)

• Security proofs based on assumptions (not this course)

• Be careful about inventing your own! (If you just want to use some crypto in your 
system, use vetted libraries!)
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Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  

• Hard concept to understand, and revolutionary! Inventors won Turing Award 
☺
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Symmetric Setting
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random string K, called the key.



Asymmetric Setting
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Each party creates a public key pk and a secret key sk.
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Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  
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Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  

• Challenge: How do you validate a public key?
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Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)
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C’s rand() Function

• C has a built-in random function:  rand()
unsigned long int next = 1; 

/* rand:  return pseudo-random integer on 0..32767 */ 

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

} 

/* srand:  set seed for rand() */

void srand(unsigned int seed) { 

next = seed;

}

• Problem:  don’t use rand() for security-critical applications!
• Given a few sample outputs, you can predict subsequent ones
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More details: “How We Learned to Cheat at Online Poker: A Study in Software Security” 
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php


PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it 
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all 
system updates
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http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/


Another real world example

random(){

byte ret = buffer[index];

if(index == 255){

index = 0;

}

else{

index++;

}

}
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byte buffer[256];

int index = 0;

setup(){

for (i=0; i < 256; i++){

buffer[i] = i;

}

shuffle_array(buffer);

}



Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically 
secure pseudorandom numbers”

• Libraries include cryptographically secure 
pseudorandom number generators (CSPRNG)
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Obtaining Pseudorandom Numbers

• Linux:
• /dev/random

• /dev/urandom - nonblocking, possibly less entropy

• getrandom() – syscall!

• Internally:
• Entropy pool gathered from multiple sources 

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs

1/22/2021 CSE 484 - Winter 2021 15



Obtaining Random Numbers

• Better idea:
• AMD/Intel’s on-chip random number generator

• RDRAND

• Hopefully no hardware bugs!
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Now: Symmetric Encryption
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Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.
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?
----------
-----

Ignore for now: How is this achieved in practice??



One weird trick to hide your bits

• XOR!
• Just XOR with a random bit!

• Why?
• Uniform output

• Independent of ‘message’ bit
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One-Time Pad
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= 10111101…
---------------

= 00110010…

10001111…
00110010… =


10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key = 
(plaintext  key)  key =
plaintext  (key  key) =
plaintext 

Cipher achieves perfect secrecy if and only if                           
there are as many possible keys as possible plaintexts,            
and every key is equally likely   (Claude Shannon, 1949)



Advantages of One-Time Pad

• Easy to compute
• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

• As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s 

computational resources

• …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?
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Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
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Dangers of Reuse
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= 00000000…
---------------

= 00110010…

00110010…
00110010… =


00000000…P1

C1

= 11111111…
---------------

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) = 
(P1P2)(KK) = P1P2



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts
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Integrity?
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= 10111101…
---------------

= 00110010…

10001111…
00110010… =


10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key = 
(plaintext  key)  key =
plaintext  (key  key) =
plaintext 

0

0



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily change it to something else
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Reducing Key Size

• What to do when it is infeasible to pre-share huge random keys?
• When one-time pad is unrealistic…

• Use special cryptographic primitives:                      block ciphers, 
stream ciphers
• Single key can be re-used (with some restrictions)

• Not as theoretically secure as one-time pad
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Stream Ciphers

• One-time pad: Ciphertext(Key,Message)=MessageKey

• Key must be a random bit sequence as long as message

• Idea: replace “random” with “pseudo-random”
• Use a pseudo-random number generator (PRNG)

• PRNG takes a short, truly random secret seed and 
expands it into a long “random-looking” sequence
• E.g., 128-bit seed into a 106-bit 

pseudo-random sequence

• Ciphertext(Key,Msg)=MsgPRNG(Key)
• Message processed bit by bit (like one-time pad)
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No efficient algorithm can tell
this sequence from truly random



Block Ciphers

• Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES

• Each key defines a different permutation

• Same key is reused for each block (can use short keys)
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