
CSE 484: Computer Security and Privacy

Software Security (Misc)

Winter 2021

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials
...

mailto:dkohlbre@cs.washington.edu

Admin

• Lab 1 checkpoint next Wednesday night!
• That is, sploits 1-3

• When you are ‘done’ you stop changing those files.

CSE 484 - Winter 2021

Last Words on Buffer Overflows…

CSE 484 - Winter 2021

Defenses

• ASLR – Randomize where the stack/heap/code starts
• Counters: Information disclosures, sprays and sleds

• Canaries – Put a value on the stack, see if it changes
• Counters: Arbitrary writes

• DEP – Mark sections of memory as non-executable, e.g. the stack
• Counters: ROP, JOP, Code-reuse attacks in general

1/15/2021 CSE 484 - Winter 2020 4

Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Maybe encrypt/randomize the shadow stack data?

1/15/2021 CSE 484 - Winter 2020 5

Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

1/15/2021 CSE 484 - Winter 2020 6

Other Possible Solutions

• Use safe programming languages, e.g., Rust (or Java?)
• What about legacy C code?

• (Though Rust doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

1/15/2021 CSE 484 - Winter 2020 7

Other Common Software Security Issues…

CSE 484 - Winter 2021

Another Type of Vulnerability

• Consider this code:

CSE 484 - Winter 2021

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

Another Example

CSE 484 - Winter 2021

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Breakout Groups: January 15th on Canvas

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Implicit Cast

• Consider this code:

CSE 484 - Winter 2021

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may
copy huge amounts of

input into buf.

Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?

• Then len + 5 = 4 (on many platforms)

• Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

CSE 484 - Winter 2021

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

• Consider this code:

• Goal: Write to file only with permission

• What can go wrong?

CSE 484 - Winter 2021

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal: Write to file only with permission

• Attacker (in another program) can change meaning of
“file” between access and open:
symlink("/etc/passwd", "file");

CSE 484 - Winter 2021

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

CSE 484 - Winter 2021

Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

CSE 484 - Winter 2021

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

CSE 484 - Winter 2021

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Timing Attacks

• Assume there are no “typical” bugs in the software
• No buffer overflow bugs

• No format string vulnerabilities

• Good choice of randomness

• Good design

• The software may still be vulnerable to timing attacks
• Software exhibits input-dependent timings

• Complex and hard to fully protect against

CSE 484 - Winter 2021

Other Examples

• Plenty of other examples of timings attacks
• Timing cache misses

• Extract cryptographic keys…

• Recent Spectre/Meltdown attacks

• Duration of a rendering operation
• Extract webpage information

• Duration of a failed decryption attempt
• Different failures mean different thing (e.g. Padding oracles)

CSE 484 - Winter 2021

Side-channels

• Timing is only one possibility

• Consider:
• Power usage

• Sensors

• EM Outputs

CSE 484 - Winter 2021

Software Security:
So what do we do?

CSE 484 - Winter 2021

Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSE 484 - Winter 2021

General Principles

• Check inputs

• Check all return values

• Least privilege

• Securely clear memory (passwords, keys, etc.)

• Failsafe defaults

• Defense in depth
• Also: prevent, detect, respond

• NOT: security through obscurity

CSE 484 - Winter 2021

General Principles

• Reduce size of trusted computing base (TCB)

• Simplicity, modularity
• But: Be careful at interface boundaries!

• Minimize attack surface

• Use vetted components

• Security by design
• But: tension between security and other goals

• Open design? Open source? Closed source?
• Different perspectives

CSE 484 - Winter 2021

Does Open Source Help?

• Different perspectives…

• Happy example?
• Linux kernel backdoor attempt thwarted (2003)

(http://www.freedom-to-tinker.com/?p=472)

• Sad example?
• Heartbleed (2014)

• Vulnerability in OpenSSL that allowed attackers to read arbitrary memory from
vulnerable servers (including private keys)

CSE 484 - Winter 2021

http://www.freedom-to-tinker.com/?p=472

Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security problem in a real
system?

• Say
• A commercial website?

• UW grade database?

• Boeing 787?

• TSA procedures?

CSE 484 - Winter 2021

