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Admin

• Lab 1 checkpoint next Wednesday night!
• That is, sploits 1-3

• When you are ‘done’ you stop changing those files.
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Last Words on Buffer Overflows…
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Defenses

• ASLR – Randomize where the stack/heap/code starts
• Counters: Information disclosures, sprays and sleds

• Canaries – Put a value on the stack, see if it changes
• Counters: Arbitrary writes

• DEP – Mark sections of memory as non-executable, e.g. the stack
• Counters: ROP, JOP, Code-reuse attacks in general
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Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Maybe encrypt/randomize the shadow stack data?
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Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?
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Other Possible Solutions

• Use safe programming languages, e.g., Rust (or Java?)
• What about legacy C code?

• (Though Rust doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”
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Other Common Software Security Issues…
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Another Type of Vulnerability

• Consider this code:
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char buf[80]; 

void vulnerable() { 

int len = read_int_from_network(); 

char *p = read_string_from_network(); 

if (len > sizeof buf) { 

error("length too large, nice try!"); 

return; 

} 

memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;



Another Example
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size_t len = read_int_from_network(); 

char *buf; 

buf = malloc(len+5); 

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Breakout Groups: January 15th on Canvas

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Implicit Cast

• Consider this code:
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char buf[80]; 

void vulnerable() { 

int len = read_int_from_network(); 

char *p = read_string_from_network(); 

if (len > sizeof buf) { 

error("length too large, nice try!"); 

return; 

} 

memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may 
copy huge amounts of 

input into buf.



Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?

• Then len + 5 = 4 (on many platforms)

• Result:  Allocate a 4-byte buffer, then read a lot of 
data into that buffer.
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size_t len = read_int_from_network(); 

char *buf; 

buf = malloc(len+5); 

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Another Type of Vulnerability

• Consider this code:

• Goal:  Write to file only with permission

• What can go wrong?
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if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));



TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal:  Write to file only with permission

• Attacker (in another program) can change meaning of 
“file” between access and open:   
symlink("/etc/passwd", "file");
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if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));



Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long
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Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE



Attacker Model

• Attacker can guess CandidatePwds through some 
standard interface

• Naive:  Try all 2568 = 18,446,744,073,709,551,616
possibilities
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE



Timing Attacks

• Assume there are no “typical” bugs in the software
• No buffer overflow bugs

• No format string vulnerabilities

• Good choice of randomness

• Good design

• The software may still be vulnerable to timing attacks
• Software exhibits input-dependent timings

• Complex and hard to fully protect against
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Other Examples

• Plenty of other examples of timings attacks
• Timing cache misses

• Extract cryptographic keys…

• Recent Spectre/Meltdown attacks

• Duration of a rendering operation
• Extract webpage information

• Duration of a failed decryption attempt
• Different failures mean different thing (e.g. Padding oracles)
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Side-channels

• Timing is only one possibility

• Consider:
• Power usage

• Sensors

• EM Outputs
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Software Security: 
So what do we do?
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Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle
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General Principles

• Check inputs

• Check all return values

• Least privilege

• Securely clear memory (passwords, keys, etc.)

• Failsafe defaults

• Defense in depth
• Also: prevent, detect, respond

• NOT: security through obscurity
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General Principles

• Reduce size of trusted computing base (TCB)

• Simplicity, modularity
• But: Be careful at interface boundaries!

• Minimize attack surface

• Use vetted components

• Security by design
• But: tension between security and other goals

• Open design? Open source? Closed source?
• Different perspectives
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Does Open Source Help?

• Different perspectives…

• Happy example? 
• Linux kernel backdoor attempt thwarted (2003) 

(http://www.freedom-to-tinker.com/?p=472) 

• Sad example?
• Heartbleed (2014)

• Vulnerability in OpenSSL that allowed attackers to read arbitrary memory from                              
vulnerable servers (including private keys)
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http://www.freedom-to-tinker.com/?p=472


Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security problem in a real 
system?

• Say
• A commercial website? 

• UW grade database?

• Boeing 787?

• TSA procedures?
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