
CSE 484: Computer Security and Privacy

Software Security:
Buffer Overflow Defenses

Winter 2021

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials
...

mailto:dkohlbre@cs.washington.edu

Admin

• Assignments:
• Homework 1: Due today at 11:59pm

• Lab 1: Sign up, granting access ~once per day, see forum

1/13/2021 CSE 484 - Winter 2020 2

Summary of Printf Risks

• Printf takes a variable number of arguments
• E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
• E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”

• Can be used to advance printf’s internal stack pointer

• Can read memory
• E.g., printf(“%x”) will print in hex format whatever printf’s internal

stack pointer is pointing to at the time

• Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

1/13/2021 CSE 484 - Winter 2020 3

How Can We Attack This?

foo() {
char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??

1/13/2021 CSE 484 - Winter 2020 4

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

1/13/2021 CSE 484 - Winter 2020 5

ret/IP Caller’s frameSaved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

Using %n to Overwrite Return Address

1/13/2021 CSE 484 - Winter 2020 6

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters in
attackString must be
equal to … what?

C allows you to concisely specify the “width” to print, causing printf to pad by printing
additional blank characters without reading anything else off the stack.

Example: printf(“%5d”, 10) will print three spaces followed by the integer: “ 10”
That is, %n will print 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

The exploitation twilight zone

• During an exploitation attempt sometimes you have to ‘let it run’
• Overflow a buffer

• Change things

• Let program run for ‘a bit’

• Everything triggers!

• Printf exploit a perfect example

1/13/2021 CSE 484 - Winter 2020 7

Recommended Reading

• It will be hard to do Lab 1 without:
• Reading (see course schedule):

• Smashing the Stack for Fun and Profit

• Exploiting Format String Vulnerabilities

• Attending section tomorrow

1/13/2021 CSE 484 - Winter 2020 8

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading

as data

• Trick vulnerable program into passing control to it

1/13/2021 CSE 484 - Winter 2020 9

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading as

data
• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. …

1/13/2021 CSE 484 - Winter 2020 10

Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
• Example: Microsoft’s Data Execution Prevention (DEP)

• This blocks many code injection exploits

• Hardware support
• AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-2004

CPUs)

• Makes memory page non-executable

• Widely deployed
• Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+

(10.4 for stack but not heap), Android 2.3+

1/13/2021 CSE 484 - Winter 2020 11

What Does “Executable Space Protection”
Not Prevent?

• Can still corrupt stack …
• … or function pointers

• … or critical data on the heap

• As long as RET points into existing code, executable space
protection will not block control transfer!
→ return-to-libc exploits

1/13/2021 CSE 484 - Winter 2020 12

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• Canvas in-class activity, Jan 13!

1/13/2021 CSE 484 - Winter 2020 13

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺

1/13/2021 CSE 484 - Winter 2020 14

return-to-libc on Steroids

• Insight: Overwritten saved EIP need not point to the beginning of a
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what? Its value is under attacker’s control!

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack

1/13/2021 CSE 484 - Winter 2020 15

Chaining RETs for Fun and Profit

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

1/13/2021 CSE 484 - Winter 2020 16

Return-Oriented Programming

1/13/2021 CSE 484 - Winter 2020 17

Defense: Run-Time Checking: StackGuard

1/13/2021 CSE 484 - Winter 2020 18

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Defense: Run-Time Checking: StackGuard

1/13/2021 CSE 484 - Winter 2020 19

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Terminator canary: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a
performance penalty
• For example, 8% for Apache Web server at one point in time

• StackGuard can be defeated
• A single memory write where the attacker controls both the value and the

destination is sufficient

1/13/2021 CSE 484 - Winter 2020 20

Defeating StackGuard

1/13/2021 CSE 484 - Winter 2020 21

• Suppose program contains copy(dst,buf)
where attacker controls both dst and buf
– Example: dst is a local pointer variable

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

Defense: ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

1/13/2021 CSE 484 - Winter 2020 22

Defense: ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures

1/13/2021 CSE 484 - Winter 2020 23

Attacking ASLR

1/13/2021 CSE 484 - Winter 2020 24

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for custom code
(e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the
fly
• Disclosing a single address can reveal the location of all code within a library,

depending on the ASLR implementation

1/13/2021 CSE 484 - Winter 2020 25

Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Maybe encrypt/randomize the shadow stack data?

1/13/2021 CSE 484 - Winter 2020 26

Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

1/13/2021 CSE 484 - Winter 2020 27

Other Possible Solutions

• Use safe programming languages, e.g., Rust (or Java?)
• What about legacy C code?

• (Though Rust doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

1/13/2021 CSE 484 - Winter 2020 32

