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Admin

• Homework 3 due today

• Last extra credit reading due Thursday
• No late days

• Lab3 due Friday

• Final project due 03/16
• No late days

• Make sure you:
• Include references

• Include at least one legal/ethics discussion slide

• Create original content

• Go beyond class materials (if it’s a topic we also covered)
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Admin

• Final day?
• Pollev.com/dkohlbre
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Course Eval

• Please fill out the course evaluation!
• https://uw.iasystem.org/survey/236212

• Or check email
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Side-channels: conceptually

• A program’s implementation (that is, the final compiled version + 
hardware) is different from the conceptual description

• Side-effects of the difference between the implementation and 
conception can reveal unexpected information
• Thus: Side-channels
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Cache side-channels

• Idea: The cache’s current state implies something about prior 
memory accesses

• Insight: Prior memory accesses can tell you a lot about a program!
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Many thanks to Craig Disselkoen for the animations.
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FLUSH + RELOAD

• Even simpler!

• Kick line L out of cache

• Let victim run

• Access L
• Fast? Victim touched it

• Slow? Victim didn’t touch it
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Spectre + Friends

• First reported in 2017

• Disclosed in 2018
• https://googleprojectzero.blogspot.com/2018/01/reading-privileged-

memory-with-side.html

• Novel class of attack: speculative execution attacks
• Aka: Spectre-class attacks

• (Academic paper published 2019… long story)
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Two pieces of background

• Cache attacks (last week)

• Speculative execution (right now!)
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Speculative Execution (the fast version)

• All modern processors are capable of speculative execution

• How much, in what ways, and when differs

• Speculative execution allows a processor to ‘guess’ about the result of 
an instruction
• And either confirm or correct itself later

• A branch predictor bases a guess on the program’s previous behavior
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Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if( x < 100 ){

y = globalarray[10];

}

return y;

}
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Example: Speculate on indirect branch
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int caller(int(*fptr)()){

int y = fptr();

return y;

}

int foo(){

return 10;

}

int bar(){

return 0;

}



What happens when we speculate wrong?

• Eventually, a squash occurs
• All work done under the incorrect guess is undone

• Bad guess on branch?
• Undo everything in the branch!

• Undo everything related!

• World reverts back to before guess …almost
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Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];  // Brought into cache

int x = *address; // Brought into cache

if( x < 100 ){

y = globalarray[10]; // Brought into cache maybe

}

return y;

}
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Speculative attacks

• Three stages:

1. Mistrain predictor

2. Run mistrained code with adversarial input

3. Recover leftover state information
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Spectre variant 1

• “Bounds-check bypass”

if( x < len(array))

array[x];
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Spectre variant 1

• “Bounds-check bypass”

if( x < len(array))

array2[array[x] * 4096];
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Spectre variant 2

• “Branch target injection”
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int caller(int(*fptr)()){

int y = fptr(x);

return y;

}

int foo(x){

array2[array1[x] * 4096];

}

int bar(x){

return x;

}



It’s A Party
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More and more:

● Foreshadow – attacks SGX

● SPOILER – mem dependence

● Etc. etc. 



What about ‘Meltdown’?

• Also called Spectre variant 3 (“rogue data cache load”)

• Spectre v1/v2 require the victim program to have the vulnerable code 
pattern
• Just like the victim program has to have a buffer overflow!

• Spectre is a global problem with speculation conceptually

• Meltdown allows the attacking program to do whatever it wants!
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Meltdown: An Intel specific problem

• Memory permissions weren’t checked during speculation
• At least for some cases

"Imagine the following instruction executed in usermode
mov rax,[somekernelmodeaddress]

It will cause an interrupt when retired, [...]"
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Enduring legacy: MDS

• Microarchitectural Data Sampling attacks
• Related type of speculative attack

• Still ‘a bug’ not ‘a feature’

• Leaks from ‘leftover’ or ‘in-flight’ data via:
• Store/forward buffers

• Uncacheable memory

• Line fill buffers

• L1 cache

• Load ports
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https://mdsattacks.com/



Canvas

• Browsers had to scramble to deal with Spectre type vulnerabilities as 
they were exploitable from webpages and allowed for arbitrary 
memory reads.

• How would you have tried to handle receiving a disclosure like this as 
the browser vendors?

• You can either discuss technical ideas or policy objectives for a 
strategy to handle the vulnerabilities.
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Defenses

• Disable User/Kernel memory space sharing
• KAISER defense

• “Fence” dangerous code patterns
• Extra instruction that block speculation past some point

• Microcode updates for processors
• MDS-class fixes
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Speculative Attacks wrapup

• Spectre vulnerabilities are here to stay, for a long time

• MDS+Meltdown (hopefully) aren’t
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