
CSE 484 : Computer Security and Privacy

(More) Side Channel Attacks

Winter 2021

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides
and materials ...

mailto:dkohlbre@cs.washington.edu

Admin

• Homework 3 due today

• Last extra credit reading due Thursday
• No late days

• Lab3 due Friday

• Final project due 03/16
• No late days

• Make sure you:
• Include references

• Include at least one legal/ethics discussion slide

• Create original content

• Go beyond class materials (if it’s a topic we also covered)

3/8/2021 CSE 484 - Winter 2021 2

Admin

• Final day?
• Pollev.com/dkohlbre

3/8/2021 CSE 484 - Winter 2021 3

Course Eval

• Please fill out the course evaluation!
• https://uw.iasystem.org/survey/236212

• Or check email

3/8/2021 CSE 484 - Winter 2021 4

https://uw.iasystem.org/survey/236212

Side-channels: conceptually

• A program’s implementation (that is, the final compiled version +
hardware) is different from the conceptual description

• Side-effects of the difference between the implementation and
conception can reveal unexpected information
• Thus: Side-channels

3/8/2021 CSE 484 - Winter 2021 5

Cache side-channels

• Idea: The cache’s current state implies something about prior
memory accesses

• Insight: Prior memory accesses can tell you a lot about a program!

3/8/2021 CSE 484 - Winter 2021 6

Timing threshold

Eviction set

Prime
targeted
set

Wait
[Timed]
Prime targeted
set

Victim access if
time > threshold

AnalysisActive AttackPre-Attack

Victim accesses targeted set

FLUSH+RELOADPRIME+PROBE

Pre-existing data Attacker’s data Victim’s data

Cache set 0 Cache set 2Cache set 1

7

(requires shared memory)

Many thanks to Craig Disselkoen for the animations.

3/8/2021 CSE 484 - Winter 2021

FLUSH + RELOAD

• Even simpler!

• Kick line L out of cache

• Let victim run

• Access L
• Fast? Victim touched it

• Slow? Victim didn’t touch it

3/8/2021 CSE 484 - Winter 2021 8

Spectre + Friends

• First reported in 2017

• Disclosed in 2018
• https://googleprojectzero.blogspot.com/2018/01/reading-privileged-

memory-with-side.html

• Novel class of attack: speculative execution attacks
• Aka: Spectre-class attacks

• (Academic paper published 2019… long story)

3/8/2021 CSE 484 - Winter 2021 9

Two pieces of background

• Cache attacks (last week)

• Speculative execution (right now!)

3/8/2021 CSE 484 - Winter 2021 10

Speculative Execution (the fast version)

• All modern processors are capable of speculative execution

• How much, in what ways, and when differs

• Speculative execution allows a processor to ‘guess’ about the result of
an instruction
• And either confirm or correct itself later

• A branch predictor bases a guess on the program’s previous behavior

3/8/2021 CSE 484 - Winter 2021 11

Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if(x < 100){

y = globalarray[10];

}

return y;

}

3/8/2021 CSE 484 - Winter 2021 12

Example: Speculate on indirect branch

3/8/2021 CSE 484 - Winter 2021 13

int caller(int(*fptr)()){

int y = fptr();

return y;

}

int foo(){

return 10;

}

int bar(){

return 0;

}

What happens when we speculate wrong?

• Eventually, a squash occurs
• All work done under the incorrect guess is undone

• Bad guess on branch?
• Undo everything in the branch!

• Undo everything related!

• World reverts back to before guess …almost

3/8/2021 CSE 484 - Winter 2021 14

Example: Speculate on branch

int foo(int* address){

int y = globalarray[0]; // Brought into cache

int x = *address; // Brought into cache

if(x < 100){

y = globalarray[10]; // Brought into cache maybe

}

return y;

}

3/8/2021 CSE 484 - Winter 2021 15

Speculative attacks

• Three stages:

1. Mistrain predictor

2. Run mistrained code with adversarial input

3. Recover leftover state information

3/8/2021 CSE 484 - Winter 2021 16

Spectre variant 1

• “Bounds-check bypass”

if(x < len(array))

array[x];

3/8/2021 CSE 484 - Winter 2021 17

Spectre variant 1

• “Bounds-check bypass”

if(x < len(array))

array2[array[x] * 4096];

3/8/2021 CSE 484 - Winter 2021 18

Spectre variant 2

• “Branch target injection”

3/8/2021 CSE 484 - Winter 2021 19

int caller(int(*fptr)()){

int y = fptr(x);

return y;

}

int foo(x){

array2[array1[x] * 4096];

}

int bar(x){

return x;

}

It’s A Party

3/8/2021 CSE 484 - Winter 2021 20[From Canella et al.]

More and more:

● Foreshadow – attacks SGX

● SPOILER – mem dependence

● Etc. etc.

What about ‘Meltdown’?

• Also called Spectre variant 3 (“rogue data cache load”)

• Spectre v1/v2 require the victim program to have the vulnerable code
pattern
• Just like the victim program has to have a buffer overflow!

• Spectre is a global problem with speculation conceptually

• Meltdown allows the attacking program to do whatever it wants!

3/8/2021 CSE 484 - Winter 2021 21

Meltdown: An Intel specific problem

• Memory permissions weren’t checked during speculation
• At least for some cases

"Imagine the following instruction executed in usermode
mov rax,[somekernelmodeaddress]

It will cause an interrupt when retired, [...]"

3/8/2021 CSE 484 - Winter 2021 22

Enduring legacy: MDS

• Microarchitectural Data Sampling attacks
• Related type of speculative attack

• Still ‘a bug’ not ‘a feature’

• Leaks from ‘leftover’ or ‘in-flight’ data via:
• Store/forward buffers

• Uncacheable memory

• Line fill buffers

• L1 cache

• Load ports

3/8/2021 CSE 484 - Winter 2021 23

https://mdsattacks.com/

Canvas

• Browsers had to scramble to deal with Spectre type vulnerabilities as
they were exploitable from webpages and allowed for arbitrary
memory reads.

• How would you have tried to handle receiving a disclosure like this as
the browser vendors?

• You can either discuss technical ideas or policy objectives for a
strategy to handle the vulnerabilities.

3/8/2021 CSE 484 - Winter 2021 24

Defenses

• Disable User/Kernel memory space sharing
• KAISER defense

• “Fence” dangerous code patterns
• Extra instruction that block speculation past some point

• Microcode updates for processors
• MDS-class fixes

3/8/2021 CSE 484 - Winter 2021 25

Speculative Attacks wrapup

• Spectre vulnerabilities are here to stay, for a long time

• MDS+Meltdown (hopefully) aren’t

3/8/2021 CSE 484 - Winter 2021 26

