Announcements

• **Things Due:**
 – **Ethics form:** Due next Monday (1/11)
 – **Homework #1:** Due next Wednesday (1/13)

• **Textbook:**
 – Not available digitally, apologies
 – I’ll be posting alternative readings as well that are freely available

• **Any logistics questions at this point?**
THREAT MODELING
Threat Modeling (Security Reviews)

- **Assets**: What are we trying to protect? How valuable are those assets?
- **Adversaries**: Who might try to attack, and why?
- **Vulnerabilities**: How might the system be weak?
- **Threats**: What actions might an adversary take to exploit vulnerabilities?
- **Risk**: How important are assets? How likely is exploit?
- **Possible Defenses**
What’s Security, Anyway?

• Common general security goals: “CIA”
 – Confidentiality
 – Integrity
 – Availability

• Or the extension: CPIAAU (Parkerian Hexad)
 – Control
 – Authenticity
 – Utility
Confidentiality (Privacy)

- Confidentiality is *concealment of information*.
Integrity

- Integrity is prevention of unauthorized changes.

Intercept messages, tamper, release again.
Availability

- Availability is **ability to use information or resources.**

Overwhelm or crash servers, disrupt infrastructure

Denial of Service (DDoS)
Authenticity

• Authenticity is knowing who you’re talking to.
Threat Modeling

• There’s no such thing as perfect security
 – But, attackers have limited resources
 – Make them pay unacceptable costs to succeed!

• Defining security per context: *identify assets, adversaries, motivations, threats, vulnerabilities, risk, possible defenses*
Threat Modeling Example: Electronic Voting

- Popular replacement to traditional paper ballots
Pre-Election

Pre-election: Poll workers load “ballot definition files” on voting machine.
Active Voting: Voters obtain single-use tokens from poll workers. Voters use tokens to activate machines and vote.
Active voting: Votes encrypted and stored. Voter token canceled.
Post-Election

Poll worker

Ballot definition file

Voter token

Voter

Interactively vote

Encrypted votes

Recorded votes

Tabulator

Post-election: Stored votes transported to tabulation center.
In-Class “Worksheet” Experiment

• Go to Canvas -> Quizzes -> “In-Class Activity – Jan 5”
 (I will also always post the link in the chat.)
• Fill out the questions while discussing with your breakout group
 – Everyone should submit their own
 – No need for polish or complete sentences – jot things down as you would on a piece of paper while chatting in class
Can You Spot Any Potential Issues?

Q1: Security goals? Assets?
Q2: Adversaries? Attack goals?
Security and E-Voting (Simplified)

- Functionality goals:
 - Easy to use, reduce mistakes/confusion

- Security goals:
 - Adversary cannot change outcome
 - Ensure single vote (counted exactly)
 - Privacy of vote
 - Physical vote storage
 - Availability of vote
Potential Adversaries

Rationales:
- Trolls
- Foreign Gouts
- Political opponents

Actors:
- Poll workers / officials
- Voters
- Engineers (SW / HW / fabrication)
Lets talk about concrete problems
Problem: An adversary (e.g., a poll worker, software developer, or company representative) able to control the software or the underlying hardware could do whatever they wanted.
KEYS TO THE KINGDOM
Photo taken from Diebold’s online store. The keys that open every Diebold touch-screen voting machine. Working copies have been made from the photo.
Problem: Ballot definition files are not authenticated.

Example attack: A malicious poll worker could modify ballot definition files so that votes cast for “Mickey Mouse” are recorded for “Donald Duck.”
Problem: Smartcards can perform cryptographic operations. But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own voter token and vote multiple times.
Problem: Encryption key ("F2654hD4") hard-coded into the software since (at least) 1998. Votes stored in the order cast.

Example attack: A poll worker could determine how voters vote.
Problem: When votes transmitted to tabulator over the Internet or a dialup connection, they are **decrypted first**; the cleartext results are sent to the tabulator.

Example attack: A sophisticated outsider could determine how voters vote.
TOWARDS DEFENSES
Approaches to Security

• Prevention
 – Stop an attack

• Detection
 – Detect an ongoing or past attack

• Response
 – Respond to attacks

• The threat of a response may be enough to deter some attackers
Whole System is Critical

- Securing a system involves a whole-system view
 - Cryptography
 - Implementation
 - People
 - Physical security
 - Everything in between

- This is because “security is only as strong as the weakest link,” and security can fail in many places
 - No reason to attack the strongest part of a system if you can walk right around it.
Whole System is Critical

• Securing a system involves a whole-system view:
 – Cryptography
 – Implementation
 – People
 – Physical security
 – Everything in between

• This is because “security is only as strong as the weakest link,” and security can fail in many places
 – No reason to attack the strongest part of a system if you can walk right around it.
Whole System is Critical

- Securing a system involves a whole-system view—Cryptography—Implementation—People—Physical security—Everything in between.

This is because "security is only as strong as the weakest link," and security can fail in many places—no reason to attack the strongest part of a system if you can walk right around it.
Attacker’s Asymmetric Advantage
Attacker’s Asymmetric Advantage

• Attacker only needs to win in one place
• Defender’s response: Defense in depth
From Policy to Implementation

• After you’ve figured out what security means to your application, there are still challenges:
 – Requirements bugs
 • Incorrect or problematic goals
 – Design bugs
 • Poor use of cryptography
 • Poor sources of randomness
 • ...
 – Implementation bugs
 • Buffer overflow attacks
 • ...
 – Is the system usable?
Many Participants

• Many parties involved
 – System developers
 – Companies deploying the system
 – The end users
 – The adversaries (possibly one of the above)

• Different parties have different goals
 – System developers and companies may wish to optimize cost
 – End users may desire security, privacy, and usability
 – But the relationship between these goals is quite complex (will customers choose features or security?)
Better News

• There are a lot of defense mechanisms
 – We’ll study some, but by no means all, in this course

• It’s important to understand their limitations
 – “If you think cryptography will solve your problem, then you don’t understand cryptography... and you don’t understand your problem”
 -- Bruce Schneier