
CSE 484: Computer Security and Privacy

Cryptography
[MACs and Hash Functions]

Winter 2021

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials
...

mailto:dkohlbre@cs.washington.edu

Admin

• Homework 2
• Out soon™

1/27/2021 CSE 484 - Winter 2021 2

When is an Encryption Scheme “Secure”?

• Hard to recover the key?
• What if attacker can learn plaintext without learning the key?

• Hard to recover plaintext from ciphertext?
• What if attacker learns some bits or some function of bits?

1/27/2021 CSE 484 - Winter 2021 3

How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algthm
• What else does the attacker know? Depends on the application in which

the cipher is used!

1/27/2021 CSE 484 - Winter 2021 4

Chosen Plaintext Attack

1/27/2021 CSE 484 - Winter 2021 5

Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algthm
• What else does the attacker know? Depends on the application in which

the cipher is used!

• Ciphertext-only attack

• KPA: Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs

• CPA: Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of his choice

• CCA: Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target

1/27/2021 CSE 484 - Winter 2021 6

Very Informal Intuition

• Security against chosen-plaintext attack (CPA)
• Ciphertext leaks no information about the plaintext

• Even if the attacker correctly guesses the plaintext, he cannot verify his guess

• Every ciphertext is unique, encrypting same message twice produces
completely different ciphertexts
• Implication: encryption must be randomized or stateful

• Security against chosen-ciphertext attack (CCA)
• Integrity protection – it is not possible to change the plaintext by modifying

the ciphertext

1/27/2021 CSE 484 - Winter 2021 7

Minimum security
requirement for a
modern encryption scheme

The shape of the formal approach

• INDistinguishability under Chosen Plaintext Attack
• IND-CPA

• Formalized cryptographic game

• Adversary submits pairs of plaintexts (M_a, M_b)
• Gets back ONE of the ciphertexts (C_x)

• Adversary must guess which ciphertext this is (C_a or C_b)
• If they can do better than 50/50, they win

1/27/2021 CSE 484 - Winter 2021 8

So Far: Achieving Privacy

1/27/2021 CSE 484 - Winter 2021 9

Alice Bob

M C
Encrypt

K

Decrypt

K

M

K K

Adversary

Message = M

Ciphertext = C

Encryption schemes: A tool for protecting privacy.

Now: Achieving Integrity

1/27/2021 CSE 484 - Winter 2021 10

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

Reminder: CBC Mode Encryption

1/27/2021 CSE 484 - Winter 2021 11

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initialization
vector
(random)

  
key key key key

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

CBC-MAC

1/27/2021 CSE 484 - Winter 2021 12

TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

   
key key key key

• Not secure when system may MAC messages of different lengths
(more in section!).

• NIST recommends a derivative called CMAC [FYI only]

Another Tool: Hash Functions

1/27/2021 CSE 484 - Winter 2021 13

You Just Did This

1/27/2021 CSE 484 - Winter 2021 14

Hash Functions: Main Idea

1/27/2021 CSE 484 - Winter 2021 15

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message
“digest”

message

Property 1: One-Way

• Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’) = y {0,1}n for a random x’

• Given y, it should be hard to find any x such that h(x)=y

• How hard?
• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output
• Expect to try 2159 inputs before finding one that hashes to y.

1/27/2021 CSE 484 - Winter 2021 16

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

1/27/2021 CSE 484 - Winter 2021 17

Birthday Paradox

• Are there two people in the first 1/8 of this class that
have the same birthday?
• 365 days in a year (366 some years)

• Pick one person. To find another person with same birthday would
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.

1/27/2021 CSE 484 - Winter 2021 18

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only
O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

1/27/2021 CSE 484 - Winter 2021 19

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but
not the other.

1/27/2021 CSE 484 - Winter 2021 20

Property 3: Weak Collision Resistance

• Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast, to break collision

resistance it is enough to find any collision.

• Brute-force attack requires O(2n) time

• Weak collision resistance does not imply collision resistance.

1/27/2021 CSE 484 - Winter 2021 22

Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
• A ciphertext can be decrypted with a decryption key… hashes have no

equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with
Hash(x’)
• Hash the same input twice → same hash value

• Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic
checksums” or “message digests”

1/27/2021 CSE 484 - Winter 2021 23

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?

1/27/2021 CSE 484 - Winter 2021 24

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords!

• Don’t need to worry about where to store the key!

• Cannot go from hash to password!

1/27/2021 CSE 484 - Winter 2021 25

Application: Password Hashing

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

1/27/2021 CSE 484 - Winter 2021 26

Application: Password Hashing + Salting

• Salting
• We ‘salt’ hashes for password by adding a randomized suffix to the password

• E.g. Hash(“coolpassword”+”35B67C2A”)

• We then store the salt with the hashed password!

• The goal is to prevent precomputation attacks
• If the adversary doesn’t know the salt, they can’t precompute common

passwords

1/27/2021 CSE 484 - Winter 2021 27

Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received by
users without modification.

Idea: given goodFile and hash(goodFile), very hard to find
badFile such that hash(goodFile)=hash(badFile)

1/27/2021 CSE 484 - Winter 2021 28

goodFile

BigFirm™ User

VIRUS

badFile

The NYTimes

hash(goodFile)

http://msn.cwusa.tv/images/Bill-Gates-08-Formal.jpg

Application: Software Integrity

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

1/27/2021 CSE 484 - Winter 2021 29

Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if

considering malicious developers

• d

1/27/2021 CSE 484 - Winter 2021 30

Which Property Do We Need?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if

considering malicious developers

• Commitments (e.g. auctions)
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean that she needs

to hash some randomness with B too)
• Collision resistance: Alice should not be able to change her mind to bid B’ such

that H(B)=H(B’)

1/27/2021 CSE 484 - Winter 2021 31

Common Hash Functions

• MD5 – Don’t Use!
• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

• RIPEMD
• 160-bit version is OK
• 128-bit version is not good

• SHA-1 (Secure Hash Algorithm) – Don’t Use!
• 160-bit output
• US government (NIST) standard as of 1993-95
• Theoretically broken 2005; practical attack 2017!

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3: standard released by NIST in August 2015

1/27/2021 CSE 484 - Winter 2021 32

SHA-1 Broken in Practice (2017)

1/27/2021 CSE 484 - Winter 2021 33

https://shattered.io

https://shattered.io/

Aside: How we evaluate hash functions

• Speed
• Is it amenable to hardware implementations?

• Diffusion
• Does changing 1 bit in the input affect all output bits?

• Resistance to attack approaches
• Collisions?

• Length extensions?

• etc

1/27/2021 CSE 484 - Winter 2021 34

Recall: Achieving Integrity

1/27/2021 CSE 484 - Winter 2021 35

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption?
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption

1/27/2021 CSE 484 - Winter 2021 36

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC

1/27/2021 CSE 484 - Winter 2021 37

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

Authenticated Encryption

• Instead:

Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

1/27/2021 CSE 484 - Winter 2021 38

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

