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Admin

• Homework 2
• Out soon™
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When is an Encryption Scheme “Secure”?

• Hard to recover the key?
• What if attacker can learn plaintext without learning the key?

• Hard to recover plaintext from ciphertext?
• What if attacker learns some bits or some function of bits?
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How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algthm
• What else does the attacker know? Depends on the application in which 

the cipher is used!
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Chosen Plaintext Attack
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Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value



How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algthm
• What else does the attacker know? Depends on the application in which 

the cipher is used!

• Ciphertext-only attack

• KPA: Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs

• CPA: Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of his choice

• CCA: Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target
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Very Informal Intuition

• Security against chosen-plaintext attack (CPA)
• Ciphertext leaks no information about the plaintext

• Even if the attacker correctly guesses the plaintext, he cannot verify his guess

• Every ciphertext is unique, encrypting same message twice produces 
completely different ciphertexts
• Implication: encryption must be randomized or stateful

• Security against chosen-ciphertext attack (CCA)
• Integrity protection – it is not possible to change the plaintext by modifying 

the ciphertext
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Minimum security 
requirement for a 
modern encryption scheme



The shape of the formal approach

• INDistinguishability under Chosen Plaintext Attack
• IND-CPA

• Formalized cryptographic game

• Adversary submits pairs of plaintexts (M_a, M_b)
• Gets back ONE of the ciphertexts (C_x)

• Adversary must guess which ciphertext this is (C_a or C_b)
• If they can do better than 50/50, they win
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So Far: Achieving Privacy
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Alice Bob
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Encrypt
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Decrypt
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Adversary

Message = M

Ciphertext = C

Encryption schemes:  A tool for protecting privacy.



Now: Achieving Integrity

1/27/2021 CSE 484 - Winter 2021 10

Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



Reminder: CBC Mode Encryption
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plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initialization
vector
(random)

  
key key key key

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity



CBC-MAC
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TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

   
key key key key

• Not secure when system may MAC messages of different lengths 
(more in section!).

• NIST recommends a derivative called CMAC [FYI only]



Another Tool: Hash Functions
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You Just Did This
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Hash Functions: Main Idea

1/27/2021 CSE 484 - Winter 2021 15

bit strings of any length n-bit bit strings
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hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message 
“digest”

message



Property 1: One-Way

• Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’) = y   {0,1}n for a random x’ 

• Given y, it should be hard to find any x such that h(x)=y

• How hard?
• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output
• Expect to try 2159 inputs before finding one that hashes to y.
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Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)
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Birthday Paradox

• Are there two people in the first 1/8 of this class that 
have the same birthday?
• 365 days in a year (366 some years)

• Pick one person.  To find another person with same birthday would 
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value 
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.
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Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only 
O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)
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One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but 
not the other. 
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Property 3: Weak Collision Resistance

• Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast, to break collision 

resistance it is enough to find any collision.

• Brute-force attack requires O(2n) time

• Weak collision resistance does not imply collision resistance.
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Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
• A ciphertext can be decrypted with a decryption key… hashes have no 

equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with 
Hash(x’)
• Hash the same input twice → same hash value

• Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic 
checksums” or “message digests”
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Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with 
the entry in the password file

• Why is hashing better than encryption here?
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Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with 
the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords!

• Don’t need to worry about where to store the key!

• Cannot go from hash to password!
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Application: Password Hashing

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?
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Application: Password Hashing + Salting

• Salting
• We ‘salt’ hashes for password by adding a randomized suffix to the password

• E.g. Hash(“coolpassword”+”35B67C2A”)

• We then store the salt with the hashed password!

• The goal is to prevent precomputation attacks
• If the adversary doesn’t know the salt, they can’t precompute common 

passwords
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Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received by 
users without modification. 

Idea: given goodFile and hash(goodFile), very hard to find 
badFile such that hash(goodFile)=hash(badFile)
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goodFile

BigFirm™ User

VIRUS

badFile

The NYTimes

hash(goodFile)

http://msn.cwusa.tv/images/Bill-Gates-08-Formal.jpg


Application: Software Integrity

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?
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Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if 

considering malicious developers

• d
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Which Property Do We Need?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if 

considering malicious developers

• Commitments (e.g. auctions)
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean that she needs 

to hash some randomness with B too)
• Collision resistance: Alice should not be able to change her mind to bid B’ such 

that H(B)=H(B’)
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Common Hash Functions

• MD5 – Don’t Use!
• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

• RIPEMD
• 160-bit version is OK
• 128-bit version is not good

• SHA-1 (Secure Hash Algorithm) – Don’t Use!
• 160-bit output
• US government (NIST) standard as of 1993-95
• Theoretically broken 2005; practical attack 2017!

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3:  standard released by NIST in August 2015
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SHA-1 Broken in Practice (2017)
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https://shattered.io

https://shattered.io/


Aside: How we evaluate hash functions

• Speed
• Is it amenable to hardware implementations?

• Diffusion
• Does changing 1 bit in the input affect all output bits?

• Resistance to attack approaches
• Collisions?

• Length extensions?

• etc

1/27/2021 CSE 484 - Winter 2021 34



Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption?
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption
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Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC
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Authenticated Encryption

• Instead: 

Encrypt then MAC.

• (Not as good:                    
MAC-then-Encrypt)
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Encrypt-then-MAC

EncryptKe

M

MACKmC’
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Ciphertext C


