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Last Time: Physical Security + Lockpicking

• If you’re interested in the subject of lockpicking, see:
• Blaze, “Cryptology and Physical Security:  Rights Amplification in Master-

Keyed Mechanical Locks”
• Blaze, “Safecracking for the Computer Scientist”
• Tool, “Guide to Lock Picking”
• Tobias, “Opening Locks by Bumping in Five Seconds or Less”
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Adversarial Goals: Connecting Physical 
Security and Computer Security
• Confidentiality … adversary should not be able to enter and steal 

information (e.g., see the spy movies, or think about bank computer 
screens facing windows)

• Integrity … adversary should not be able to enter property and 
remove items, or damage items, or place new items (e.g., installing 
spy device)

• Availability … adversary should no be able to deny legitimate entry 
(denial of service) into an environment (e.g., put superglue in a lock, 
or gum, or break a wrong key in lock)
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Threat Modeling (Security Reviews)

• Benefits/Harms: What are benefits and harms of technology?
• Adversaries: Who might try to attack, and why?
• Vulnerabilities: How might the system be weak?
• Threats: What actions might an adversary take to exploit vulnerabilities?
• Risk: How important are assets? How likely is exploit?
• Possible Defenses

• E.g., Different defenses and considerations might be appropriate in 
different situations (e.g., gym locker, bank, nuclear weapons silos)

• E.g., Different adversaries (insiders, like former tenants or ex-employees, or 
outsiders)
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Approaches to Security

• Prevention
• Stop an attack
• E.g., door locks and fences and bars on windows in physical world 

environment

• Detection
• Detect an ongoing or past attack
• E.g., video camera in physical world environment 

• Response
• Respond to attacks
• E.g.., home alarm system that calls police when entry is detected
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Whole System is Critical

• Securing a system involves a whole-system view
• Cryptography
• Implementation
• People
• Physical security
• Everything in between

• This is because “security is only as strong as the weakest link,” and security 
can fail in many places

• No reason to attack the strongest part of a system if you can walk right around it.
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Overlapping Defensive Ideas
• Defense in Depth

• Layers, e.g., cardkey access then physical keys

• Deterrents (which can also be layers)
• Home alarm systems
• Cameras

• Least Privilege 
• At UW:

• Grad keys can open certain doors
• Faculty keys can open all those doors and more doors
• Custodial keys can open even more doors 
• (see previously cited document from Matt Blaze to understand 

how this works)
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Saltzer and Schroeder (1975 paper)

• See the paper: 
http://web.mit.edu/Saltzer/www/publications/protection/

• Wikipedia’s summary of principles on next slide (since Wikipedia 
summary is shorter): 
https://en.wikipedia.org/wiki/Saltzer_and_Schroeder%27s_design_pr
inciples

• Connections and insights can be made by thinking about these principles in 
the context of physical security
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Saltzer and Schroeder (1975 paper)
• Economy of mechanism: Keep the design as simple and small as possible.
• Fail-safe defaults: Base access decisions on permission rather than exclusion.
• Complete mediation: Every access to every object must be checked for authority.
• Open design: The design should not be secret.
• Separation of privilege: Where feasible, a protection mechanism that requires two 

keys to unlock it is more robust and flexible than one that allows access to the 
presenter of only a single key.

• Least privilege: Every program and every user of the system should operate using 
the least set of privileges necessary to complete the job.

• Least common mechanism: Minimize the amount of mechanism common to more 
than one user and depended on by all users.

• Psychological acceptability: It is essential that the human interface be designed for 
ease of use, so that users routinely and automatically apply the protection 
mechanisms correctly.

• Work factor: Compare the cost of circumventing the mechanism with the resources 
of a potential attacker.

• Compromise recording: It is sometimes suggested that mechanisms that reliably 
record that a compromise of information has occurred can be used in place of more 
elaborate mechanisms that completely prevent loss.
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What’s Wrong With This Picture?

6/2/2021 10



What’s Wrong With This Picture?
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Think About the Whole System
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Usability 

• Usability is so important, that the importance of usability has permeated 
much of this course

• But let’s now take a few moments to consider usability specifically

• And I encourage everyone to consider taking an HCI course!
• And to always think about all the stakeholders that might be impacted by a 

system
• Direct stakeholders
• Indirect stakeholders

• Developers are users too  (i.e., consider making it easy/usable to develop 
secure solutions)
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On Usability

• Why is usability important?
• People are the critical element of any computer system

• People are the real reason computers exist in the first place
• Even if it is possible for a system to protect against an adversary, people 

may use the system in other, less secure ways
• Usability errors can lead people to think that they are using a secure 

setting when in fact they are not (e.g., certain password managers)
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Question

• What does usable security mean? 
• What does it mean for a system to have usable security?
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How to Improve?
• These are all concepts that people have discussed (not 

that everyone agrees):
• Security education and training
• Help users build accurate mental models
• Find ways to make systems better match people’s natural mental 

models
• Make security invisible
• Make security the least-resistance path

• On your own: Think about usability challenges that you 
have encoutered, with respect to security, and what 
would have made those systems more usable

• Big recommendation: Think proactively about all 
stakeholders (not just people similar to the system 
designers)
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Social Engineering

• Art or science of skillfully maneuvering human beings to take action in some aspect of 
their lives
• From Social Engineering: The Art of Human Hacking by Christopher Hadnagy
• (Also see:  The Art of Deception: Controlling the Human Element of Security by Kevin Mitnick and 

William Simon)
• Used by

• Hackers
• Penetration testers
• Spies
• Identity thieves
• Disgruntled employees
• Scam artists
• Executive recruiters
• Salespeople
• Governments
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Example

• Hello?
• Hello?
• Hello?
• You called me?
• You called me?
• There’s something wrong with this phone – what kind of phone do 

you have?
• (From DEFCON social engineering competition winner)
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Example
• Take this survey, win and iPhone
• Call “victims”, to explain that they were victims of a 

phishing training, which they failed, and now need to 
clear up their computer

• Have them download and install clean up software
• Yes, okay to bypass “unknown source” warning for the 

software install
• Okay, great, now next, I need you to now change your 

password on this main system…
• Good, good, you are clearly a responsible employee. 

Thank you for taking this so seriously. Now I need you to 
download a new certificate for your directory server, let 
me tell you how…

• (Inspired by a talk by Chris Hadnagy, though I might have 
exact words wrong)
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Example from Mark Seiden

• Every time he pen tests a company, he carries with him a printed 
document that says

• “This person is doing a pen test of security, authorized by the CEO”
• “If you have any questions, call this number <number>”
• Signed by the CEO

• 50% of times that he is stopped by a security guard, he shows them 
the paper and they say “oh, okay, that makes sense”, and then lets 
him proceed

• 50% of the remaining 50% of the times: the security guard calls the 
phone number on the paper…
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Next: Mobile Platform Security
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Roadmap

• Mobile malware
• Mobile platforms vs. traditional platforms
• Dive into (evolution of) Android
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Mobile Malware: Threat Modeling

Q1: How might malware authors get malware onto phones? 

Q2: What are some goals that mobile device malware authors might 
have, or technical attacks they might attempt? How might this differ 
from desktop settings?
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What can go wrong?
“Threat Model” 1: Malicious applications
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What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
• Premium SMS messages 
• Track location
• Record phone calls
• Log SMS 
• Steal data
• Phishing  
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What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
• User data is leaked or stolen 

• (on phone, on network, on server)
• Application is hijacked by an attacker
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.
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they’re running under can do.



What’s Different about Mobile Platforms?

• Applications are isolated
• Each runs in a separate execution context
• No default access to file system, devices, etc.
• Different than traditional OSes where multiple applications run with the 

same user permissions!

• App Store: approval process for applications
• Market: Vendor controlled/Open
• App signing: Vendor-issued/self-signed
• User approval of permissions 
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Why isolate on mobile devices and not PCs?

• Application isolation is great!

• Phones drew lessons from desktops
• Desktops draw lessons from phones
• Browsers learning too

• App Isolation sometimes available for PCs
• Windows 10 Sandbox (May 2019)
• Prerequisites

• Windows 10 May 2019 update version 1903 installed
• Hardware virtualization enabled
• Windows 10 Pro or Enterprise

• Browsers: Site Isolation
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More Details: Android

• Based on Linux
• Application sandboxes

• Applications run as                                                                                                   
separate UIDs, in separate processes.

• Memory corruption errors only
lead to arbitrary code execution
in the context of the particular
application, not complete system compromise!

• (Can still escape sandbox – but must 
compromise Linux kernel to do so.)  allows 
rooting
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Challenges with Isolated Apps

So mobile platforms isolate applications for security, but…

1. Permissions: How can applications access sensitive resources?
2. Communication: How can applications communicate with each 

other?
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Next Slides

• Not presenting next slides; previous slides cover main content
• Following slides available, for those interested in learning more
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(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such attacks by 
limiting applications’ access to:

– System Resources (clipboard, file system).
– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.
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State of the Art
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Prompts (time-of-use) Manifests (install-time)



Are Manifests Usable?

Do users pay attention to permissions?
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[Felt et al.]

… but 88% of users looked at reviews.



Are Manifests Usable?

Do users understand the warnings?
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Are Manifests Usable?

Do users act on permission information?

“Have you ever not installed an app because of permissions?”
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Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).
• Big change! Now app developers needed to check for 

permissions or catch exceptions.
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(2) Inter-Process Communication
• Primary mechanism in Android: Intents

• Sent between application components
• e.g., with startActivity(intent)

• Explicit: specify component name
• e.g., com.example.testApp.MainActivity

• Implicit: specify action (e.g., ACTION_VIEW) and/or data 
(URI and MIME type)

• Apps specify Intent Filters for their components.
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Eavesdropping and Spoofing

• Buggy apps might accidentally:
• Expose their component-to-component messages publicly  eavesdropping
• Act on unauthorized messages they receive       spoofing
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Permission Re-Delegation

• An application without a 
permission gains additional 
privileges through another 
application.

• Settings application is deputy: has 
permissions, and accidentally 
exposes APIs that use those 
permissions.
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Settings

Demo 
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]



Other Android Security Features

• Secure hardware
• Full disk encryption
• Modern memory protections (e.g., ASLR, non-executable stack)
• Application signing
• App store review
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File Permissions

• Files written by one application cannot be read by other applications
• Previously, this wasn’t true for files stored on the SD card (world readable!) –

Android cracked down on this

• It is possible to do full file system encryption
• Key = Password/PIN combined with salt, hashed
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Memory Management

• Address Space Layout Randomization to randomize addresses on 
stack

• Hardware-based No eXecute (NX) to prevent code execution on 
stack/heap

• Stack guard derivative
• Some defenses against double free bugs (based on OpenBSD’s

dmalloc() function)
• etc.

[See http://source.android.com/tech/security/index.html]
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Android Fragmentation
• Many different variants of 

Android (unlike iOS)
• Motorola, HTC, Samsung, …

• Less secure ecosystem
• Inconsistent or incorrect 

implementations
• Slow to propagate kernel 

updates and new versions
• Many changes made in past few 

years (e.g. Project Treble)

[https://developer.android.com/about/dashboa
rds/index.html] 
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Rooting and Jailbreaking

• Allows user to run applications with root privileges
• e.g., modify/delete system files, app management, CPU management, 

network management, etc.

• Done by exploiting vulnerability in firmware to install su binary.
• Double-edged sword…

• Note: iOS is more restrictive than Android
• Doesn’t allow “side-loading” apps, etc.
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What about iOS?
• Apps are sandboxed
• Encrypted user data

• Often in the news…

• App Store review process is 
(was? maybe?) stricter

• But not infallible: e.g., see Wang 
et al. “Jekyll on iOS: When 
Benign Apps Become Evil” 
(USENIX Security 2013)
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• No “sideloading” apps
– Unless you jailbreak



iOS model vs Android

• Monolithic vs fragmented

• Closed vs open

• Single distributor vs many
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Lessons Being Learned from Other Spaces

• Mobile phone platforms built on lessons learned from desktops
• Desktops and Browsers learning from Mobile phones
• Overall, trying to increase security for all platforms
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