
CSE 484: Computer Security and Privacy

Physical Security + Stepping Back +
Mobile

Spring 2021

Tadayoshi Kohno

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner,
Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others
for sample slides and materials ...

Last Time: Physical Security + Lockpicking

• If you’re interested in the subject of lockpicking, see:
• Blaze, “Cryptology and Physical Security: Rights Amplification in Master-

Keyed Mechanical Locks”
• Blaze, “Safecracking for the Computer Scientist”
• Tool, “Guide to Lock Picking”
• Tobias, “Opening Locks by Bumping in Five Seconds or Less”

6/2/2021 2

Adversarial Goals: Connecting Physical
Security and Computer Security
• Confidentiality … adversary should not be able to enter and steal

information (e.g., see the spy movies, or think about bank computer
screens facing windows)

• Integrity … adversary should not be able to enter property and
remove items, or damage items, or place new items (e.g., installing
spy device)

• Availability … adversary should no be able to deny legitimate entry
(denial of service) into an environment (e.g., put superglue in a lock,
or gum, or break a wrong key in lock)

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 3

Threat Modeling (Security Reviews)

• Benefits/Harms: What are benefits and harms of technology?
• Adversaries: Who might try to attack, and why?
• Vulnerabilities: How might the system be weak?
• Threats: What actions might an adversary take to exploit vulnerabilities?
• Risk: How important are assets? How likely is exploit?
• Possible Defenses

• E.g., Different defenses and considerations might be appropriate in
different situations (e.g., gym locker, bank, nuclear weapons silos)

• E.g., Different adversaries (insiders, like former tenants or ex-employees, or
outsiders)

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 4

Approaches to Security

• Prevention
• Stop an attack
• E.g., door locks and fences and bars on windows in physical world

environment

• Detection
• Detect an ongoing or past attack
• E.g., video camera in physical world environment

• Response
• Respond to attacks
• E.g.., home alarm system that calls police when entry is detected

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 5

Whole System is Critical

• Securing a system involves a whole-system view
• Cryptography
• Implementation
• People
• Physical security
• Everything in between

• This is because “security is only as strong as the weakest link,” and security
can fail in many places

• No reason to attack the strongest part of a system if you can walk right around it.

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 6

Overlapping Defensive Ideas
• Defense in Depth

• Layers, e.g., cardkey access then physical keys

• Deterrents (which can also be layers)
• Home alarm systems
• Cameras

• Least Privilege
• At UW:

• Grad keys can open certain doors
• Faculty keys can open all those doors and more doors
• Custodial keys can open even more doors
• (see previously cited document from Matt Blaze to understand

how this works)

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 7

Saltzer and Schroeder (1975 paper)

• See the paper:
http://web.mit.edu/Saltzer/www/publications/protection/

• Wikipedia’s summary of principles on next slide (since Wikipedia
summary is shorter):
https://en.wikipedia.org/wiki/Saltzer_and_Schroeder%27s_design_pr
inciples

• Connections and insights can be made by thinking about these principles in
the context of physical security

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 8

http://web.mit.edu/Saltzer/www/publications/protection/
https://en.wikipedia.org/wiki/Saltzer_and_Schroeder%27s_design_principles

Saltzer and Schroeder (1975 paper)
• Economy of mechanism: Keep the design as simple and small as possible.
• Fail-safe defaults: Base access decisions on permission rather than exclusion.
• Complete mediation: Every access to every object must be checked for authority.
• Open design: The design should not be secret.
• Separation of privilege: Where feasible, a protection mechanism that requires two

keys to unlock it is more robust and flexible than one that allows access to the
presenter of only a single key.

• Least privilege: Every program and every user of the system should operate using
the least set of privileges necessary to complete the job.

• Least common mechanism: Minimize the amount of mechanism common to more
than one user and depended on by all users.

• Psychological acceptability: It is essential that the human interface be designed for
ease of use, so that users routinely and automatically apply the protection
mechanisms correctly.

• Work factor: Compare the cost of circumventing the mechanism with the resources
of a potential attacker.

• Compromise recording: It is sometimes suggested that mechanisms that reliably
record that a compromise of information has occurred can be used in place of more
elaborate mechanisms that completely prevent loss.

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 9

What’s Wrong With This Picture?

6/2/2021 10

What’s Wrong With This Picture?

6/2/2021 11

Think About the Whole System

6/2/2021 12

Usability

• Usability is so important, that the importance of usability has permeated
much of this course

• But let’s now take a few moments to consider usability specifically

• And I encourage everyone to consider taking an HCI course!
• And to always think about all the stakeholders that might be impacted by a

system
• Direct stakeholders
• Indirect stakeholders

• Developers are users too (i.e., consider making it easy/usable to develop
secure solutions)

6/2/2021 CSE 484 / CSE M 584 - Fall 2017 13

On Usability

• Why is usability important?
• People are the critical element of any computer system

• People are the real reason computers exist in the first place
• Even if it is possible for a system to protect against an adversary, people

may use the system in other, less secure ways
• Usability errors can lead people to think that they are using a secure

setting when in fact they are not (e.g., certain password managers)

6/2/2021 14

Question

• What does usable security mean?
• What does it mean for a system to have usable security?

6/2/2021 CSE 484 / CSE M 584 15

How to Improve?
• These are all concepts that people have discussed (not

that everyone agrees):
• Security education and training
• Help users build accurate mental models
• Find ways to make systems better match people’s natural mental

models
• Make security invisible
• Make security the least-resistance path

• On your own: Think about usability challenges that you
have encoutered, with respect to security, and what
would have made those systems more usable

• Big recommendation: Think proactively about all
stakeholders (not just people similar to the system
designers)

6/2/2021 CSE 484 / CSE M 584 16

Social Engineering

• Art or science of skillfully maneuvering human beings to take action in some aspect of
their lives
• From Social Engineering: The Art of Human Hacking by Christopher Hadnagy
• (Also see: The Art of Deception: Controlling the Human Element of Security by Kevin Mitnick and

William Simon)
• Used by

• Hackers
• Penetration testers
• Spies
• Identity thieves
• Disgruntled employees
• Scam artists
• Executive recruiters
• Salespeople
• Governments

6/2/2021 17

Example

• Hello?
• Hello?
• Hello?
• You called me?
• You called me?
• There’s something wrong with this phone – what kind of phone do

you have?
• (From DEFCON social engineering competition winner)

6/2/2021 18

Example
• Take this survey, win and iPhone
• Call “victims”, to explain that they were victims of a

phishing training, which they failed, and now need to
clear up their computer

• Have them download and install clean up software
• Yes, okay to bypass “unknown source” warning for the

software install
• Okay, great, now next, I need you to now change your

password on this main system…
• Good, good, you are clearly a responsible employee.

Thank you for taking this so seriously. Now I need you to
download a new certificate for your directory server, let
me tell you how…

• (Inspired by a talk by Chris Hadnagy, though I might have
exact words wrong)

6/2/2021 19

Example from Mark Seiden

• Every time he pen tests a company, he carries with him a printed
document that says

• “This person is doing a pen test of security, authorized by the CEO”
• “If you have any questions, call this number <number>”
• Signed by the CEO

• 50% of times that he is stopped by a security guard, he shows them
the paper and they say “oh, okay, that makes sense”, and then lets
him proceed

• 50% of the remaining 50% of the times: the security guard calls the
phone number on the paper…

6/2/2021 CSE 484 / CSE M 584 - Autumn 2019 20

Next: Mobile Platform Security

6/2/2021 CSE 484 - Spring 2021 29

Roadmap

• Mobile malware
• Mobile platforms vs. traditional platforms
• Dive into (evolution of) Android

6/2/2021 CSE 484 - Spring 2021 30

Mobile Malware: Threat Modeling

Q1: How might malware authors get malware onto phones?

Q2: What are some goals that mobile device malware authors might
have, or technical attacks they might attempt? How might this differ
from desktop settings?

6/2/2021 CSE 484 - Spring 2021 31

What can go wrong?
“Threat Model” 1: Malicious applications

6/2/2021 CSE 484 - Spring 2021 32

What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
• Premium SMS messages
• Track location
• Record phone calls
• Log SMS
• Steal data
• Phishing

6/2/2021 CSE 484 - Spring 2021 33

Some of these are unique
to phones (SMS, rich

sensor data)

What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
• User data is leaked or stolen

• (on phone, on network, on server)
• Application is hijacked by an attacker

6/2/2021 CSE 484 - Spring 2021 34

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

6/2/2021 CSE 484 - Spring 2021 38

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

6/2/2021 CSE 484 - Spring 2021 39

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

6/2/2021 CSE 484 - Spring 2021 40

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Applications are isolated
• Each runs in a separate execution context
• No default access to file system, devices, etc.
• Different than traditional OSes where multiple applications run with the

same user permissions!

• App Store: approval process for applications
• Market: Vendor controlled/Open
• App signing: Vendor-issued/self-signed
• User approval of permissions

6/2/2021 CSE 484 - Spring 2021 41

Why isolate on mobile devices and not PCs?

• Application isolation is great!

• Phones drew lessons from desktops
• Desktops draw lessons from phones
• Browsers learning too

• App Isolation sometimes available for PCs
• Windows 10 Sandbox (May 2019)
• Prerequisites

• Windows 10 May 2019 update version 1903 installed
• Hardware virtualization enabled
• Windows 10 Pro or Enterprise

• Browsers: Site Isolation

6/2/2021 CSE 484 - Spring 2021 42

More Details: Android

• Based on Linux
• Application sandboxes

• Applications run as
separate UIDs, in separate processes.

• Memory corruption errors only
lead to arbitrary code execution
in the context of the particular
application, not complete system compromise!

• (Can still escape sandbox – but must
compromise Linux kernel to do so.) allows
rooting

6/2/2021 CSE 484 - Spring 2021 43

Challenges with Isolated Apps

So mobile platforms isolate applications for security, but…

1. Permissions: How can applications access sensitive resources?
2. Communication: How can applications communicate with each

other?

6/2/2021 CSE 484 - Spring 2021 44

Next Slides

• Not presenting next slides; previous slides cover main content
• Following slides available, for those interested in learning more

6/2/2021 CSE 484 - Spring 2021 45

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such attacks by
limiting applications’ access to:

– System Resources (clipboard, file system).
– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

6/2/2021 CSE 484 - Spring 2021 46

How should operating system grant
permissions to applications?

State of the Art

6/2/2021 CSE 484 - Spring 2021 47

Prompts (time-of-use) Manifests (install-time)

Are Manifests Usable?

Do users pay attention to permissions?

6/2/2021 CSE 484 - Spring 2021 48

[Felt et al.]

… but 88% of users looked at reviews.

Are Manifests Usable?

Do users understand the warnings?

6/2/2021 CSE 484 - Spring 2021 49

[Felt et al.]

Are Manifests Usable?

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

6/2/2021 CSE 484 - Spring 2021 50

[Felt et al.]

Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).
• Big change! Now app developers needed to check for

permissions or catch exceptions.

6/2/2021 CSE 484 - Spring 2021 51

(2) Inter-Process Communication
• Primary mechanism in Android: Intents

• Sent between application components
• e.g., with startActivity(intent)

• Explicit: specify component name
• e.g., com.example.testApp.MainActivity

• Implicit: specify action (e.g., ACTION_VIEW) and/or data
(URI and MIME type)

• Apps specify Intent Filters for their components.

6/2/2021 CSE 484 - Spring 2021 52

Eavesdropping and Spoofing

• Buggy apps might accidentally:
• Expose their component-to-component messages publicly eavesdropping
• Act on unauthorized messages they receive spoofing

6/2/2021 CSE 484 - Spring 2021 53

[Chin et al.]

Permission Re-Delegation

• An application without a
permission gains additional
privileges through another
application.

• Settings application is deputy: has
permissions, and accidentally
exposes APIs that use those
permissions.

6/2/2021 CSE 484 - Spring 2021 54

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

Other Android Security Features

• Secure hardware
• Full disk encryption
• Modern memory protections (e.g., ASLR, non-executable stack)
• Application signing
• App store review

6/2/2021 CSE 484 - Spring 2021 56

File Permissions

• Files written by one application cannot be read by other applications
• Previously, this wasn’t true for files stored on the SD card (world readable!) –

Android cracked down on this

• It is possible to do full file system encryption
• Key = Password/PIN combined with salt, hashed

6/2/2021 CSE 484 - Spring 2021 59

Memory Management

• Address Space Layout Randomization to randomize addresses on
stack

• Hardware-based No eXecute (NX) to prevent code execution on
stack/heap

• Stack guard derivative
• Some defenses against double free bugs (based on OpenBSD’s

dmalloc() function)
• etc.

[See http://source.android.com/tech/security/index.html]

6/2/2021 CSE 484 - Spring 2021 60

http://source.android.com/tech/security/index.html

Android Fragmentation
• Many different variants of

Android (unlike iOS)
• Motorola, HTC, Samsung, …

• Less secure ecosystem
• Inconsistent or incorrect

implementations
• Slow to propagate kernel

updates and new versions
• Many changes made in past few

years (e.g. Project Treble)

[https://developer.android.com/about/dashboa
rds/index.html]

6/2/2021 CSE 484 - Spring 2021 61

Rooting and Jailbreaking

• Allows user to run applications with root privileges
• e.g., modify/delete system files, app management, CPU management,

network management, etc.

• Done by exploiting vulnerability in firmware to install su binary.
• Double-edged sword…

• Note: iOS is more restrictive than Android
• Doesn’t allow “side-loading” apps, etc.

6/2/2021 CSE 484 - Spring 2021 62

What about iOS?
• Apps are sandboxed
• Encrypted user data

• Often in the news…

• App Store review process is
(was? maybe?) stricter

• But not infallible: e.g., see Wang
et al. “Jekyll on iOS: When
Benign Apps Become Evil”
(USENIX Security 2013)

6/2/2021 CSE 484 - Spring 2021 63

• No “sideloading” apps
– Unless you jailbreak

iOS model vs Android

• Monolithic vs fragmented

• Closed vs open

• Single distributor vs many

6/2/2021 CSE 484 - Spring 2021 64

Lessons Being Learned from Other Spaces

• Mobile phone platforms built on lessons learned from desktops
• Desktops and Browsers learning from Mobile phones
• Overall, trying to increase security for all platforms

6/2/2021 CSE 484 - Spring 2021 65

	CSE 484: Computer Security and Privacy��Physical Security + Stepping Back + Mobile
	Last Time: Physical Security + Lockpicking
	Adversarial Goals: Connecting Physical Security and Computer Security
	Threat Modeling (Security Reviews)
	Approaches to Security
	Whole System is Critical
	Overlapping Defensive Ideas
	Saltzer and Schroeder (1975 paper)
	Saltzer and Schroeder (1975 paper)
	What’s Wrong With This Picture?
	What’s Wrong With This Picture?
	Think About the Whole System
	Usability
	On Usability
	Question
	How to Improve?
	Social Engineering
	Example
	Example
	Example from Mark Seiden
	Next: Mobile Platform Security
	Roadmap
	Mobile Malware: Threat Modeling
	What can go wrong?
	What can go wrong?
	What can go wrong?
	Background: Before Mobile Platforms
	Background: Before Mobile Platforms
	Background: Before Mobile Platforms
	What’s Different about Mobile Platforms?
	Why isolate on mobile devices and not PCs?
	More Details: Android
	Challenges with Isolated Apps
	Next Slides
	(1) Permission Granting Problem
	State of the Art
	Are Manifests Usable?
	Are Manifests Usable?
	Are Manifests Usable?
	Android 6.0: Prompts!
	(2) Inter-Process Communication
	Eavesdropping and Spoofing
	Permission Re-Delegation
	Other Android Security Features
	File Permissions
	Memory Management
	Android Fragmentation
	Rooting and Jailbreaking
	What about iOS?
	iOS model vs Android
	Lessons Being Learned from Other Spaces

