
CSE 484: Computer Security and Privacy

Side Channels and Web Tracking

Spring 2021

Tadayoshi Kohno

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner,
Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others
for sample slides and materials ...

Administrivia

• Lab 2 due May 25
• Final Project Checkpoint due May 26
• Lab 3 has become extra credit
• Friday (May 28): Guest Lecture: Charlie Reis (Google)

5/26/2021 CSE 484 - Spring 2021 2

Spectre

• Exploit speculative execution and cache timing information to extract
private information from the same process

• Example: JavaScript from web page trying to extract information from
Browser

• Architecture Background:
• Hardware architecture provides “promises” to software
• Those proposes focus on the functional properties of the software, not

performance properties
• Architectures do a lot to try to increase performance

5/26/2021 3

Instruction Speculation Tutorial
Many steps (cycles) to execute one instruction; time flows left to right →

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation
add
load
branch
and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store
(memory) go fast!
Mis-speculate: Abort architectural changes (registers, memory); go in other branch
direction

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Hardware Caching Tutorial
Main Memory (DRAM) 1000x too slow

Add Hardware Cache(s): small, transparent hardware memory

● Like a software cache: speculate near-term reuse (locality) is
common

● Like a hash table: an item (block or line) can go in one or few
slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4

--0
--1
--2
--3

12?
Miss

Insert 12

120
--1
--2
--3

07?
Miss

Insert 07

120
--1
--2
073

12?
HIT!
No

changes

120
--1
--2
073

16?
Miss

Victim 12
Insert 16

160
--1
--2
073

Note 12
victimized

“early” due
to “alias”

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Spectre (Worksheet)
• Consider this code, running as a kernel system call or as part of a cryptographic library.

if (x < array1_size)
y = array2[array1[x] * 256];

• Suppose:
• That an adversary can run code, in the same process.
• That an adversary can control the value x.
• That an adversary has access to array2.
• That the adversary’s code cannot simply read arbitrary memory in the process.
• That there is some secret value, elsewhere in the process, that the adversary would like to learn.

• Can you envision a way that an adversary could use their own code, to call a vulnerable function with the
above code, to learn the secret information? Leverage branch prediction and cache structure / timing.

5/26/2021 6

Spectre: Key Insights

• Train branch predictor to follow one branch of a conditional
• After branch predictor trained, make the followed branch access

information that the code should not be allowed to access
• That access information will be loaded into the cache
• After the hardware determines that the branch was incorrectly

executed, the logic of the program will be rolled back but the cache
will still be impacted

• Time reads to cache, to see which cache lines are read more
efficiently

5/26/2021 7

Attacker Steps

• Attacker: Execute code with valid inputs, train branch predictor to assume conditional is
true

• Attacker: Invoke code with x outside of array1 , array1_size and array2 not cached, but
value at array1+x cached // Attacker goal: read secret memory at address array1+x

• CPU: CPU guesses bounds check is true, speculatively reads from array2[array1[x]*256]
using malicious x

• CPU: Read from array2 loads data into cache at an address that depends on array1[x]
using malicious x

• CPU: Change in cache state not reverted when processor realizes that speculative
execution erroneous

• Attacker: Measure cache timings for array2; read of array2[n*256] will be fast for secret
byte n (at array1+x)

• Attacker: Repeat for other values of x

5/26/2021 8

Web Tracking

5/26/2021 CSE 484 - Spring 2021 9

A topic in flux

• Tracking via cookies

• Tracking via other methods

• Fingerprinting

• FLoC

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 10

Ads That Follow You

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 11

Advertisers (and others) track your browsing
behaviors for the purposes of targeted ads,
website analytics, and personalized content.

Third-Party Web Tracking

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 12

These ads allow criteo.com to link your visits
between sites, even if you never click on the
ads.

Browsing profile for user
123:

cnn.com
theonion.com
private-site.com
political-site.com

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 13

Concerns About Privacy

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 14

First and Third Parties

• First-party cookie: belongs to top-level domain.
• Third-party cookie: belongs to domain of embedded content (such as

image, iframe).

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 15

www.bar.com

www.foo.com

Bar’s Server

Foo’s Server

www.bar.com’s
cookie (1st party)

www.foo.com’s
cookie (3rd party)

http://www.foo.com/

Anonymous Tracking

Trackers included in other sites use third-party cookies containing unique
identifiers to create browsing profiles.

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 16

criteo.com
cookie: id=789

user 789:
theonion.com, cnn.com,
private-site.com, …cookie: id=789

Basic Tracking Mechanisms
• Tracking requires:

(1) re-identifying a user.
(2) communicating id + visited site back to tracker.

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 17

Tracking Technologies
• HTTP Cookies
• HTTP Auth
• HTTP Etags
• Content cache
• IE userData
• HTML5 protocol and content

handlers
• HTML5 storage

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 18

• Flash cookies (retired)
• Silverlight storage
• TLS session ID & resume
• Browsing history
• window.name
• HTTP STS
• DNS cache

• “Zombie” cookies that respawn
(http://samy.pl/evercookie)

http://samy.pl/evercookie

History Sniffing: A Side Channel

How can a webpage figure out which sites you visited previously?
• Color of links

• CSS :visited property
• getComputedStyle()

• Cached Web content timing
• DNS timing

5/26/2021 CSE 484 / CSE M 584 - Winter 2021 19

	CSE 484: Computer Security and Privacy��Side Channels and Web Tracking
	Administrivia
	Spectre
	Instruction Speculation Tutorial
	Hardware Caching Tutorial
	Spectre (Worksheet)
	Spectre: Key Insights
	Attacker Steps
	Web Tracking
	A topic in flux
	Ads That Follow You
	Third-Party Web Tracking
	Slide Number 13
	Concerns About Privacy
	First and Third Parties
	Anonymous Tracking
	Basic Tracking Mechanisms
	Tracking Technologies
	History Sniffing: A Side Channel

