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Administrivia

• Lab 2 due May 25
• Final Project Checkpoint due May 26
• Lab 3 has become extra credit
• Friday (May 28): Guest Lecture: Charlie Reis (Google)
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Spectre

• Exploit speculative execution and cache timing information to extract 
private information from the same process

• Example: JavaScript from web page trying to extract information from 
Browser

• Architecture Background:
• Hardware architecture provides “promises” to software
• Those proposes focus on the functional properties of the software, not 

performance properties
• Architectures do a lot to try to increase performance
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Instruction Speculation Tutorial
Many steps (cycles) to execute one instruction; time flows left to right →   

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation
add
load
branch
and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store
(memory) go fast!
Mis-speculate: Abort architectural changes (registers, memory); go in other branch 
direction   

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx



Hardware Caching Tutorial
Main Memory (DRAM) 1000x too slow

Add Hardware Cache(s): small, transparent hardware memory

● Like a software cache: speculate near-term reuse (locality) is 
common

● Like a hash table: an item (block or line) can go in one or few 
slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4
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Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx



Spectre (Worksheet)
• Consider this code, running as a kernel system call or as part of a cryptographic library. 

if (x < array1_size)
y = array2[array1[x] * 256];

• Suppose:
• That an adversary can run code, in the same process.
• That an adversary can control the value x.
• That an adversary has access to array2.
• That the adversary’s code cannot simply read arbitrary memory in the process.
• That there is some secret value, elsewhere in the process, that the adversary would like to learn.

• Can you envision a way that an adversary could use their own code, to call a vulnerable function with the 
above code, to learn the secret information? Leverage branch prediction and cache structure / timing.
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Spectre: Key Insights

• Train branch predictor to follow one branch of a conditional
• After branch predictor trained, make the followed branch access 

information that the code should not be allowed to access
• That access information will be loaded into the cache
• After the hardware determines that the branch was incorrectly 

executed, the logic of the program will be rolled back but the cache 
will still be impacted

• Time reads to cache, to see which cache lines are read more 
efficiently
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Attacker Steps

• Attacker: Execute code with valid inputs, train branch predictor to assume conditional is 
true

• Attacker: Invoke code with x outside of array1 , array1_size and array2 not cached, but 
value at array1+x cached // Attacker goal: read secret memory at address array1+x

• CPU: CPU guesses bounds check is true, speculatively reads from array2[array1[x]*256] 
using malicious x

• CPU: Read from array2 loads data into cache at an address that depends on array1[x] 
using malicious x

• CPU: Change in cache state not reverted when processor realizes that speculative 
execution erroneous

• Attacker: Measure cache timings for array2; read of array2[n*256] will be fast for secret 
byte n (at array1+x)

• Attacker: Repeat for other values of x
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Web Tracking
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A topic in flux

• Tracking via cookies

• Tracking via other methods

• Fingerprinting

• FLoC
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Ads That Follow You
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Advertisers (and others) track your browsing 
behaviors for the purposes of targeted ads, 
website analytics, and personalized content.



Third-Party Web Tracking
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These ads allow criteo.com to link your visits 
between sites, even if you never click on the 
ads.

Browsing profile for user 
123:

cnn.com
theonion.com
private-site.com
political-site.com
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Concerns About Privacy
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First and Third Parties

• First-party cookie: belongs to top-level domain.
• Third-party cookie: belongs to domain of embedded content (such as 

image, iframe).
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www.bar.com

www.foo.com

Bar’s Server

Foo’s Server

www.bar.com’s
cookie (1st party)

www.foo.com’s
cookie (3rd party)

http://www.foo.com/


Anonymous Tracking

Trackers included in other sites use third-party cookies containing unique 
identifiers to create browsing profiles.
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criteo.com
cookie: id=789

user 789: 
theonion.com, cnn.com, 
private-site.com, …cookie: id=789



Basic Tracking Mechanisms
• Tracking requires:

(1) re-identifying a user.
(2) communicating id + visited site back to tracker.
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Tracking Technologies
• HTTP Cookies
• HTTP Auth
• HTTP Etags
• Content cache
• IE userData
• HTML5 protocol and content 

handlers
• HTML5 storage
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• Flash cookies (retired)
• Silverlight storage
• TLS session ID & resume
• Browsing history
• window.name
• HTTP STS
• DNS cache

• “Zombie” cookies that respawn
(http://samy.pl/evercookie)

http://samy.pl/evercookie


History Sniffing: A Side Channel

How can a webpage figure out which sites you  visited previously?
• Color of links

• CSS :visited property
• getComputedStyle()

• Cached Web content timing
• DNS timing
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