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Administrivia

• Last Class: Ariana Mirian from UCSD “Hack for Hire: Exploring the 
Emerging Market for Account Hijacking” 

• Upcoming guest lectures (please join during class time, if possible, for 
Q&A)
• Friday, May 14: Emily McReynolds from Microsoft re: security, privacy, and the 

law

• Monday, May 17: Sunny Consolvo and Kurt Thomas from Google re: recent 
work on “Hate, Harassment, and the Changing Landscape of Online Abuse”

• Friday, May 28: Charlie Reis from Google on Chrome Security 
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Administrivia

• HW2 due on May 14
• Please see rubric on canvas re: where we want to see work

• Final Project deadlines coming soon
• May 14: Project formation + brief description

• May 26: Outline and references

• June 7: Final submission
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Possible Talk of Interest (Langdon Winner, 
May 20, 5:30pm)
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• Decades of enthusiasm for the magic of digital devices has generated a society 
largely passive as regards democratic participation in the shaping of new 
technologies that will affect how we live.  

• We’ve learned to accept and celebrate whatever flows from the Silicon Valley 
pipeline, even when the results undermine personal privacy and concentrate 
wealth and power in the hands of a scant few.  

• Initiatives in “technology assessment” from earlier times encouraged popular 
participation and careful reflection upon choices in this realm.  Can this approach 
be revived?

• RSVP: https://techpolicylab.uw.edu/events/event/distinguished-lecture-with-
langdon-winner-technology-innovation-and-the-malaise-of-democracy/

https://techpolicylab.uw.edu/events/event/distinguished-lecture-with-langdon-winner-technology-innovation-and-the-malaise-of-democracy/


SQL Injection
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Typical Login Prompt
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Typical Query Generation Code

$selecteduser = $_GET['user']; 

$sql = "SELECT Username, Key FROM Key " . 

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql); 

What if ‘user’ is a malicious string that changes the meaning of the 
query?
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User Input Becomes Part of Query
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname
IS ‘$user’



Normal Login
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘alicebob’



Malicious User Input
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SQL Injection Attack
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user 
accounts



XKCD
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http://xkcd.com/327/

http://xkcd.com/327/


SQL Injection: Basic Idea
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Victim server

Victim SQL DB

Attacker

unintended 
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end 

database changes the meaning of query

• Special case of command injection



Authentication with Backend DB
set UserFound = execute(

“SELECT * FROM UserTable WHERE

username=‘ ” &  form(“user”) & “ ′ AND   

password= ‘ ” &  form(“pwd”) & “ ′ ” );

User supplies username and password, this SQL query checks if 

user/password combination is in the database

If not UserFound.EOF

Authentication correct

else Fail
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Only true if the result of SQL 
query is not empty, i.e., 
user/pwd is in the database

(*) remember to 
hash passwords for 
real authentication 
scheme



Using SQL Injection to Log In

• User gives username ’  OR 1=1 --

• Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘ ’ OR 1=1 -- … );

• Now all records match the query, so the result is not empty  correct 
“authentication”!
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Always true! Everything after -- is ignored!



“Blind SQL Injection” https://owasp.org/www-

community/attacks/Blind_SQL_Injection

• SQL injection attack where attacker asks database series of true or 
false questions

• Used when 
• the database does not output data to the web page

• the web shows generic error messages, but has not mitigated the code that is 
vulnerable to SQL injection.

• SQL Injection vulnerability more difficult to exploit, but not 
impossible.
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https://owasp.org/www-community/attacks/Blind_SQL_Injection


Preventing SQL Injection

• Validate all inputs
• Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form becoming part of the 
query code
• E.g.: escape(O’Connor) = O\’Connor

• Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything accidentally not 
checked / escaped?
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Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)
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http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html


Data-as-code

• XSS

• SQL Injection

• (Like buffer overflows)
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Cross-Site Request Forgery
(CSRF/XSRF)
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Cookie-Based Authentication Review
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ServerBrowser



Browser Sandbox Review

• Based on the same origin policy (SOP)

• Active content (scripts) can send anywhere!
• For example, can submit a POST request

• Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin
• … but you can do a lot with just sending!
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Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off
• Session cookie remains in browser state

• User then visits a malicious website containing
<form  name=BillPayForm

action=http://bank.com/BillPay.php>

<input  name=recipient value=attacker> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side effects can 
happen
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Cookies in Forged Requests
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User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E



Impact

• Hijack any ongoing session (if no protection)
• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click 

purchase

• Reprogram the user’s home router

• Login to the attacker’s account
• Why?
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XSRF True Story
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[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications 



XSRF (aka CSRF): Summary
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Attack server

Server victim 

User victim

1

2

4

Q: how long do you stay logged on to Gmail?  Financial sites?



Broader View of XSRF

• Abuse of cross-site data export
• SOP does not control data export

• Malicious webpage can initiates requests from the user’s browser to an 
honest server

• Server thinks requests are part of the established session between the 
browser and the server (automatically sends cookies)
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XSRF Defenses
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• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer: 
http://www.facebook.com/home.php



Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
• Token often based on user’s session ID

• Server must verify correctness of token before executing sensitive operations

• Why does this work?
• Same-origin policy: attacker can’t read token out of legitimate forms loaded 

in user’s browser, so can’t create fake forms with correct token
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<input type=hidden value=23a3af01b>



Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required
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Referer: 
http://www.facebook.com/home.php

Referer: 
http://www.evil.com/attack.html

Referer: 

✓



?



Why Not Always Strict Checking?

• Why might the referer header be suppressed?
• Stripped by the organization’s network filter

• Stripped by the local machine

• Stripped by the browser for HTTPS → HTTP transitions

• User preference in browser

• Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF 
defenses today
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