
CSE 484: Computer Security and Privacy

Web Security

Spring 2021

Tadayoshi Kohno

yoshi@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Administrivia

• Last Class: Ariana Mirian from UCSD “Hack for Hire: Exploring the
Emerging Market for Account Hijacking”

• Upcoming guest lectures (please join during class time, if possible, for
Q&A)
• Friday, May 14: Emily McReynolds from Microsoft re: security, privacy, and the

law

• Monday, May 17: Sunny Consolvo and Kurt Thomas from Google re: recent
work on “Hate, Harassment, and the Changing Landscape of Online Abuse”

• Friday, May 28: Charlie Reis from Google on Chrome Security

5/12/2021 CSE 484 - Spring 2021 2

Administrivia

• HW2 due on May 14
• Please see rubric on canvas re: where we want to see work

• Final Project deadlines coming soon
• May 14: Project formation + brief description

• May 26: Outline and references

• June 7: Final submission

5/12/2021 CSE 484 - Spring 2021 3

Possible Talk of Interest (Langdon Winner,
May 20, 5:30pm)

5/12/2021 CSE 484 - Spring 2021 4

• Decades of enthusiasm for the magic of digital devices has generated a society
largely passive as regards democratic participation in the shaping of new
technologies that will affect how we live.

• We’ve learned to accept and celebrate whatever flows from the Silicon Valley
pipeline, even when the results undermine personal privacy and concentrate
wealth and power in the hands of a scant few.

• Initiatives in “technology assessment” from earlier times encouraged popular
participation and careful reflection upon choices in this realm. Can this approach
be revived?

• RSVP: https://techpolicylab.uw.edu/events/event/distinguished-lecture-with-
langdon-winner-technology-innovation-and-the-malaise-of-democracy/

https://techpolicylab.uw.edu/events/event/distinguished-lecture-with-langdon-winner-technology-innovation-and-the-malaise-of-democracy/

SQL Injection

5/12/2021 CSE 484 - Spring 2021 5

Typical Login Prompt

5/12/2021 CSE 484 - Spring 2021 6

Typical Query Generation Code

$selecteduser = $_GET['user'];

$sql = "SELECT Username, Key FROM Key " .

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql);

What if ‘user’ is a malicious string that changes the meaning of the
query?

5/12/2021 CSE 484 - Spring 2021 7

User Input Becomes Part of Query

5/12/2021 CSE 484 - Spring 2021 8

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

Normal Login

5/12/2021 CSE 484 - Spring 2021 9

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘alicebob’

Malicious User Input

5/12/2021 CSE 484 - Spring 2021 10

SQL Injection Attack

5/12/2021 CSE 484 - Spring 2021 11

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

XKCD

5/12/2021 CSE 484 - Spring 2021 12

http://xkcd.com/327/

http://xkcd.com/327/

SQL Injection: Basic Idea

5/12/2021 CSE 484 - Spring 2021 13

Victim server

Victim SQL DB

Attacker

unintended
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end

database changes the meaning of query

• Special case of command injection

Authentication with Backend DB
set UserFound = execute(

“SELECT * FROM UserTable WHERE

username=‘ ” & form(“user”) & “ ′ AND

password= ‘ ” & form(“pwd”) & “ ′ ”);

User supplies username and password, this SQL query checks if

user/password combination is in the database

If not UserFound.EOF

Authentication correct

else Fail

5/12/2021 CSE 484 - Spring 2021 14

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

(*) remember to
hash passwords for
real authentication
scheme

Using SQL Injection to Log In

• User gives username ’ OR 1=1 --

• Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘ ’ OR 1=1 -- …);

• Now all records match the query, so the result is not empty  correct
“authentication”!

5/12/2021 CSE 484 - Spring 2021 15

Always true! Everything after -- is ignored!

“Blind SQL Injection” https://owasp.org/www-

community/attacks/Blind_SQL_Injection

• SQL injection attack where attacker asks database series of true or
false questions

• Used when
• the database does not output data to the web page

• the web shows generic error messages, but has not mitigated the code that is
vulnerable to SQL injection.

• SQL Injection vulnerability more difficult to exploit, but not
impossible.

5/12/2021 CSE 484 - Spring 2021 16

https://owasp.org/www-community/attacks/Blind_SQL_Injection

Preventing SQL Injection

• Validate all inputs
• Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form becoming part of the
query code
• E.g.: escape(O’Connor) = O\’Connor

• Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything accidentally not
checked / escaped?

5/12/2021 CSE 484 - Spring 2021 17

Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)

5/12/2021 CSE 484 - Spring 2021 18

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Data-as-code

• XSS

• SQL Injection

• (Like buffer overflows)

5/12/2021 CSE 484 - Spring 2021 20

Cross-Site Request Forgery
(CSRF/XSRF)

5/12/2021 CSE 484 - Spring 2021 21

Cookie-Based Authentication Review

5/12/2021 CSE 484 - Spring 2021 22

ServerBrowser

Browser Sandbox Review

• Based on the same origin policy (SOP)

• Active content (scripts) can send anywhere!
• For example, can submit a POST request

• Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin
• … but you can do a lot with just sending!

5/12/2021 CSE 484 - Spring 2021 23

Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off
• Session cookie remains in browser state

• User then visits a malicious website containing
<form name=BillPayForm

action=http://bank.com/BillPay.php>

<input name=recipient value=attacker> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side effects can
happen

5/12/2021 CSE 484 - Spring 2021 24

Cookies in Forged Requests

5/12/2021 CSE 484 - Spring 2021 25

User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E

Impact

• Hijack any ongoing session (if no protection)
• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click

purchase

• Reprogram the user’s home router

• Login to the attacker’s account
• Why?

5/12/2021 CSE 484 - Spring 2021 27

XSRF True Story

5/12/2021 CSE 484 - Spring 2021 28

[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications

XSRF (aka CSRF): Summary

5/12/2021 CSE 484 - Spring 2021 29

Attack server

Server victim

User victim

1

2

4

Q: how long do you stay logged on to Gmail? Financial sites?

Broader View of XSRF

• Abuse of cross-site data export
• SOP does not control data export

• Malicious webpage can initiates requests from the user’s browser to an
honest server

• Server thinks requests are part of the established session between the
browser and the server (automatically sends cookies)

5/12/2021 CSE 484 - Spring 2021 30

XSRF Defenses

5/12/2021 CSE 484 - Spring 2021 31

• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
• Token often based on user’s session ID

• Server must verify correctness of token before executing sensitive operations

• Why does this work?
• Same-origin policy: attacker can’t read token out of legitimate forms loaded

in user’s browser, so can’t create fake forms with correct token

5/12/2021 CSE 484 - Spring 2021 32

<input type=hidden value=23a3af01b>

Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required

5/12/2021 CSE 484 - Spring 2021 33

Referer:
http://www.facebook.com/home.php

Referer:
http://www.evil.com/attack.html

Referer:

✓



?

Why Not Always Strict Checking?

• Why might the referer header be suppressed?
• Stripped by the organization’s network filter

• Stripped by the local machine

• Stripped by the browser for HTTPS → HTTP transitions

• User preference in browser

• Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF
defenses today

5/12/2021 CSE 484 - Spring 2021 34

