
Section 4: Lab 1 Hints, 
Modular Arithmetic 
and 2DES



Administrivia
● Final deadline for lab1 is Friday, April 30  @ 11:59pm

○ Run the md5sum command on your last 4 exploits

○ Put the outputs in <netid>_<netid>_<netid>.txt 

○ Submit on Canvas

● Homework 2 to be released early next week
○ Hands-on work with cryptography

○ Individual assignment



Lab 1 Notes/Hints
● Sploit 5: See tfree from last section.

○ Make sure the free bit of the left chunk is set

○ The 2nd four bytes of q will be overwritten by 

line 112

○ How can you move past this?

i. Point to an assembly instruction?

ii. Hardcode an instruction code?

iii. The movement does not have to be 

precise!

q (p->s.l, in tfree))
&buf?

L P.R L nextR1 1

q (in bar)

p (in tfree) 

&ret?



Lab 1 Notes/Hints
● Sploit 6: snprintf to a location.

○ Overwrite ret with %n (will need > 1)

○ Pad %u, %d, %x to get the value to write

○ %u, %d, %x, %n all expect an argument

○ Internal pointer begins after (char *) arg

Arguments

RET
SFP

buf[464]

char *arg
sizeof(buf)

buf

RET, SFP, etc.

Blue: foo’s stack frame
Green: snprintf’s stack frame

Printf’s 
internal 
pointer

Additional arguments to snprintf 
would (normally) be after arg.

int snprintf ( char * s, size_t n, const char * format, ... );



Lab 1 Notes/Hints
● Sploit 7: Similar to sploit 2.

○ However, you can’t overwrite RET since foo 

calls _exit before returning.

○ Where can you take over execution? 

■ Hint: Think about *p = a
○ Try disassembling _exit

Arguments

RET
SFP

p

a

Blue: Foo’s stack frame
Green: bar’s stack frame

1 byte 
overwrite

Program expects the  stack to 
look like the layout of  foo 
when returning from bar.

Arguments

RET
SFP

Local vars



Homework 2 Pointers
● RSA functionality (more next section)

● Block modes: CTR, ECB

● Diffie-Hellman (lecture, soon)

● Certificate Authorities (lecture, soon)

● Meet-in-the-middle vs 2DES (lecture 10)

○ Python quickstart guide: https://learnxinyminutes.com/docs/python/

○ Python DES package: https://pypi.org/project/des/

https://learnxinyminutes.com/docs/python/
https://pypi.org/project/des/


● The modulo:

Modular Arithmetic

● Many parts of cryptography depend 

on properties of modular arithmetic

● We’ll talk more about it in lecture 

soon™ - public key cryptography, 

Diffie-Hellman Protocol (1976)

a mod b
=

the remainder of a÷b



Modular Exponentiation

How would we compute something like this?

Let p = 11. Let g = 7. 
Compute g400 mod p

7400≈1.09x10338...



(a*b) mod p 
= 

(a mod p * b mod p) mod p



Q1

Let p = 11. Let g = 10. 
Compute g1 mod p, g2 mod p, g3 mod p, …, g100 mod p.

(a*b) mod p 
= 

(a mod p * b mod p) mod p



Q1 Solution

Let p = 11. Let g = 10. 
Compute g1 mod p, g2 mod p, g3 mod p, …, g100 mod p.

10^1 mod 11 = 10 10^2 mod 11 = 1
10^3 mod 11 = (10^1 mod 11 * 10^2 mod 11) mod 11 = (10 * 1) mod 11 = 10
10^4 mod 11 = (10^2 mod 11 * 10^2 mod 11) mod 11= (1 * 1) mod 11 = 1
10^5 mod 11 = (10^1 mod 11 * 10^4 mod 11) mod 11 = (10 * 1) mod 11 = 10

…. Etc.

Creates cyclic group {10, 1}.

(a*b) mod p 
= 

(a mod p * b mod p) mod p



Q2

Let p = 11. Let g = 7. 
Compute g1 mod p, g2 mod p, g3 mod p, …, g100 mod p.

(a*b) mod p 
= 

(a mod p * b mod p) mod p



Q2 Solution

Let p = 11. Let g = 7. 
Compute g1 mod p, g2 mod p, g3 mod p, …, g100 mod p.

7^1 mod 11 = 7 7^2 mod 11 = 5 7^3 mod 11 = 2 7^4 mod 11 = 3
7^5 mod 11 = 10 7^6 mod 11 = 4 7^7 mod 11 = 6 7^8 mod 11 = 9
7^9 mod 11 = 8 7^10 mod 11 = 1
7 ^11 mod 11 = 7 7^12 mod 11 = 5 …. Etc.

Creates cyclic group {7,5,2,3,10,4,6,9,8,1}.
This is generating all positive integers < p.

(a*b) mod p 
= 

(a mod p * b mod p) mod p



Q3

Let p = 11. Let g = 7.
Compute g400 mod p, without using a calculator.

(a*b) mod p 
= 

(a mod p * b mod p) mod p



Q3 Solution
Note that 400 = 256 + 128 + 16.

7^2 mod 11 = 5
7^4 mod 11 = (7^2 mod 11 * 7^2 mod 11) mod 11 = 5 * 5 mod 11 = 3
7^8 mod 11 = (7^4 mod 11 * 7^4 mod 11) mod 11 = 3 * 3 mod 11 = 9
7^16 mod 11 = (7^8 mod 11 * 7^8 mod 11) mod 11 = 9 * 9 mod 11 = 4

… … …  
7^128 mod 11 = (7^64 mod 11 * 7^64 mod 11) mod 11 = 3 * 3 mod 11 = 9
7^256 mod 11 = (7^128 mod 11 * 7^128 mod 11) mod 11 = 9 * 9 mod 11 = 4

Thus,  7^400 mod 11 = (7^256 mod 11 * 7^128 mod 11 * 7^16 mod 11) mod 11
  = (4 * 9 * 4) mod 11
  = 1 mod 11
  = 1



Calculate using a discrete logarithm - computationally very hard

● Why is this hard? There’s not much we can learn from cyclical groups - very little is 

understood about the sequence of values

● You can base cryptographic schemes around the hardness of calculating the 

discrete logarithm, especially if you pick large values

a = gX mod p
Given a, g, and p, what is x? 

Modular Exponentiation



Thinking about encryption

Which symmetric encryption mode would you use for the following situations? 
Why?

● You are going to send a small one-time command to fire to your nukes.

● You are living in the 1970s and want to send a long letter to your lover on 
ARPANET.

● Everything else (given the tools we’ve learned) 



Thinking about encryption

What is a flaw with ECB encryption?



2DES
● Key1 and key2 are 56-bit keys
● Adversary knows the plaintext and the ciphertext
● Strategy 1: brute force attack - 2¹¹² possibilities
● Strategy 2: meet-in-the-middle attack - 

precompute 2 tables for Encrypt (P, Key1) and 
Decrypt (C, Key2) and find the matching output, 
2⁵⁶ * 2 = 2⁵⁷ possibilities



Meet-in-the-middle attack

K1 Encrypt(P, K1)

1 Y₁

2 Y₂

... ...

2⁵⁶ Y₂⁵⁶

Decrypt(C, K2) K2

Z₁ 1

Z₂ 2

... ...

Z₂⁵⁶ 2⁵⁶

P X C

DES Key1 DES Key2

If Yₘ = Zₘ, We have found X. K1 = Kₘ and K2 = 
Kₘ



Tips on HW2 Q9
● Shorter key length 2¹⁴
● You are given a plaintext/ciphertext pair for finding the key, and another 

ciphertext to decrypt and obtain the message
● Use des package with the function provided to you

● Other functions that might be helpful from des: 
encrypt(plaintext), decrypt(ciphertext), bytearray.fromhex()



Is encryption (confidentiality) enough?

“Final!!!
KNE 110
Monday 
2:30PM”

david@cs
AES 128-bit key,
CBC mode

ok

In this case, an adversary 
doesn’t gain anything 

important by learning the  
content of this message.

Scenario: Yoshi wants to send out an email about exam times - and a hacker 
has learned the encryption key



Is encryption (confidentiality) enough?

“Final!!!
KNE 110
Saturday 
12:30AM”

484 Student

????

Tampers with 
message in 

transit

But, the attacker could tamper with the message during transmission, 
and the recipient would not know - so we need to ensure integrity  



MAC (Message Authentication Code)
Provides integrity and authentication: only someone who knows the 

KEY can compute correct MAC for a given message.



When do we MAC?
The good:
Encrypt-then-MAC

MAC-then-encrypt

Not as good as 

Encrypt-then-MAC

The bad (& ugly):
Encrypt-and-MAC

MAC is deterministic! Same 

plaintext → same MAC



How do we create a MAC? 
CBC-MAC: Encrypt the message in CBC mode, use the last block as the MAC

k = secret key Last block of 
ciphertext 
used as MAC

Initialization 
vector is 0

*CBC-MAC is not the only MAC algorithm - today most use HMAC; we’ll show why next



Is CBC-MAC vulnerable?

● How could we find out?

● Cryptanalysis: using mathematical analysis to rigorously reason about a 

cryptographic system

● Let’s use cryptanalysis to find a collision

● two different inputs leading to the same MAC tag

● (violating collision resistance)



Exercise: CBC-MAC collision vulnerability

Suppose a and b are both one block long, and suppose the 

sender MACs a, b, and a || b with CBC-MAC. 

An attacker who intercepts the MAC tags for these 

messages can now forge the MAC for the message 

b || (MK(b) ⊕ MK(a) ⊕ b)

which the sender never sent. The forged tag for this 

message is equal to MK(a || b), the tag for a || b. Justify 

mathematically why this is true.

a b

EK EK

TAG

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

a || b: a and b concatenated 
MK(a): MAC for message a
 EK(a): ciphertext for message a



Exercise: CBC-MAC collision vulnerability

a b

EK EK

TAG

Step 1: Figure out what MK(a), MK(b), and MK(a || b) 
in terms of the encryption key.

Annotate sketch with the sender’s messages and 
MACs.

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

???

???

???

Prove: 
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)



a b

EK EK

EK(EK(a)⊕b)

MK(a) = EK(a)
MK(b) = EK(b)  (not shown)

MK(a || b) = EK(EK(a)⊕b)

EK(a) EK(a)⊕b

Exercise: CBC-MAC collision vulnerability

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Prove: 
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)



b MK(b)⊕MK(a)⊕b  

EK EK

???

??? ???Step 2: Figure out MK(b || (MK(b) ⊕ MK(a) ⊕ b)) .

For the MAC of the attacker’s message  
b || (MK(b) ⊕ MK(a) ⊕ b), what are the values of the ???’s?

Exercise: CBC-MAC collision vulnerability

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Prove: 
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)



b EK(b)⊕EK(a)⊕b  

EK

EK

EK(EK(a) ⊕ b) 

EK(b) E
K

(a) ⊕ b
    MK(b || (MK(b) ⊕ MK(a) ⊕ b)) 
= MK(b || (EK(b) ⊕ EK(a) ⊕ b)) 
= EK(EK(b) ⊕ EK(b) ⊕ EK(a) ⊕ b)

= EK(EK(a) ⊕ b) This is the same as 
MK(a || b)!

Exercise: CBC-MAC collision vulnerability

These terms 
cancel out

Prove: 
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)



So what?
● We can prove, just using the specification of CBC-MAC, that the 

messages b || (M(b) ⊕ M(a) ⊕ b) and  a || b share the same tag. This 
approach is a common method used in cryptanalysis.

● We broke the theoretical guarantee that no two different 
messages will never share a tag.

● If you were to use CBC-MAC in a protocol, it provides 
information about specific weaknesses and how not to use it.



Safer CBC-MAC for variable length messages

For a message m of length l:

1. Construct s by prepending the length of m to the 
message:  s = concat(l, m)

2. Pad s until the length is a multiple of the block size
3. Apply CBC-MAC to the padded string s.
4. Output the last ciphertext block, or a part of it. Don’t 

output intermediates.

● Warning: Appending to end is just as broken as what 
we showed!

● Or encrypt output with another block cipher under a 
different key (CMAC). Or use HMAC, UMAC, GMAC.

● Follow latest guidance very carefully! 

l + pad

EK EK

b1

TAG

EK

bl...

...



Good luck with the rest of lab 1!


