Section 4: Lab 1 Hints,
Modular Arithmetic
and 2DES

Administrivia

e Finaldeadline forlab1is Friday, April 30 @ 11:59pm
o Runthe md5sum command on your last 4 exploits
o Put the outputs in <netid>_<netid>_<netid>.txt
o Submit on Canvas

e Homework 2 to be released early next week
o Hands-on work with cryptography

o Individual assignment

Lab 1 Notes/Hints 98 | = sl

if (q NULL && GET_FREEBIT(q))
. . 110 {
e Sploit 5: See tfree from last section. 111 CLR_FREEBIT(q);
o Make sure the free bit of the left chunk is set s g:z: S~ 2f>s‘ &
o The 2nd four bytes of q will be overwritten by SET_FREEBIT(q);
line 112 p=4q;

o How can you move past this?
i. Point to an assembly instruction?
ii. Hardcode aninstruction code?
iii. The movement does not have to be

. l g (in bar)
precise. Sret?
L PR 1 L R 1
q (p->s.l, in tfree)) p (in tfree)

&buf?

Lab 1 Notes/Hints

e Sploit 6: snprintf to a location.
o Overwrite ret with %n (will need > 1)
o Pad %u, %d, %x to get the value to write
o %u, %d, %x, %n all expect an argument
o Internal pointer begins after (char *) arg

int foo(char *arg)

{
char buf[312];

snprintf(buf, sizeof buf, arg);
return 9;

}

int snprintf (char *

S,

Blue: foo’s stack frame
Green: snprintf’s stack frame

Arguments
{4)
SFP
bufl464] Printf’s
har * “— internal
char arg pointer

sizeof(buf)
buf

RET, SFP, etc.

Additional argumentsto snprintf
would (normally) be after arg.

size_t n, const char * format, ...);

N N

W W NINN

O 00

~N Oy i

>

e

b=

Lab 1 Notes/Hints

Sploit 7: Similar to sploit 2.

o However, you can’'t overwrite RET since foo
calls _exit before returning.
o Where can you take over execution?
m Hint: Thinkabout *p = a
o Trydisassembling _exit

void foo(char xargvl[]) 33 kp = a;
v { 34
int *p; 35 _exit(0);
int a = 0; 36
p &a; 37 }

bar(argv[1]);

Blue: Foo's stack frame
Green: bar’s stack frame

Arguments

RET

p

a

Arguments

RET

SFP —

Local vars

Program expects the stack to
look like the layout of foo
when returning from bar.

1 byte
overwrite

Homework 2 Pointers

RSA functionality (more next section)
Block modes: CTR, ECB
Diffie-Hellman (lecture, soon)
Certificate Authorities (lecture, soon)
Meet-in-the-middle vs 2DES (lecture 10)
o Python quickstart guide:
o Python DES package:

https://learnxinyminutes.com/docs/python/
https://pypi.org/project/des/

Modular Arithmetic

e The modulo:

amod b

the remainder of a<b

e Many parts of cryptography depend
on properties of modular arithmetic
WEe'll talk more about it in lecture
soon™ - public key cryptography,
Diffie-Hellman Protocol (1976)

Modular Exponentiation

How would we compute something like this?

letp=11.Letg="/.
Compute §*°° mod p

7499=1.09x103%8 .,

(a*b) mod p

(amodp*bmodp) modp

Q1

letp=11.Letg=10.
Compute g* mod p, g2 mod p, g2 mod p, ..., g2°° mod p.

(a*b) mod p

(amod p * b mod p) mod p

Q1 Solution

letp=11.Letg=10.
Compute g* mod p, g2 mod p, g mod p, ..., g2°° mod p.

10 mod 11 =10 1072 mod 11 =1

103 mod 11 = (101 mod 11 * 102 mod 11) mod 11 = (10 * 1) mod 11 = 10
104 mod 11 = (10*2 mod 11 * 102 mod 11) mod 11=(1 * 1) mod 11 = 1
10”5 mod 11 = (101 mod 11 * 10*4 mod 11) mod 11 = (10 * 1) mod 11 = 10

.. Etc.
(a*b) mod p

Creates cyclic group {10, 1}. (amod p * b mod p) mod p

Q2

letp=11.Letg="7.
Compute g* mod p, g2 mod p, g2 mod p, ..., g2°° mod p.

(a*b) mod p

(amod p * b mod p) mod p

Q2 Solution

letp=11.Letg="7.
Compute g* mod p, g2 mod p, g mod p, ..., g2°° mod p.

™M mod11=7 "2mod11=5 7"3 mod 11 =2 ™ mod11=3
™5 mod11=10 76 mod 11 =4 /"7 mod 11 =6 7"8 mod 11 =9
7"9 mod 11 =8 70 mod 11 =1

7M1 mod11=7 7M2mod11=5 Etc.

Creates cyclic group {7,5,2,3,10,4,6,9,8,1}.

o) L (a*b) mod p
This is generating all positive integers < p. _

(amod p * b mod p) mod p

Q3

letp=11.Letg="7.
Compute g*°° mod p, without using a calculator.

(a*b) mod p

(amod p * b mod p) mod p

Q3 Solution

Note that 400 = 256 + 128 + 16.

"2mod11=5

74 mod 11 = (7*2 mod 11 * 7*2 mod 11) mod 11 =5* 5 mod 11 =3

7"8 mod 11 = (74 mod 11 * 7*4 mod 11) mod 11 =3 * 3 mod 11 =9

/"6 mod 11 = (78 mod 11 * 728 mod 11) mod 11 =9 * 9 mod 11 =4
728 mod 11 = (7"64 mod 11 * 7264 mod 11) mod 11 =3 *3 mod 11 =9
77256 mod 11 = (728 mod 11 * 72128 mod 11) mod 11 =9* 9 mod 11 =4

Thus, 77400 mod 11 = (7*256 mod 11 * 72128 mod 11 * 7416 mod 11) mod 11
=(4*9*4)mod 11
=1 mod 11
=1

Modular Exponentiation

a=9"modp
Given a, g, and p, what is x?

Calculate using a discrete logarithm - computationally very hard
e Why s this hard? There’s not much we can learn from cyclical groups - very little is
understood about the sequence of values
e You can base cryptographic schemes around the hardness of calculating the
discrete logarithm, especially if you pick large values

Thinking about encryption

Which symmetric encryption mode would you use for the following situations?
Why?

e You are going to send a small one-time command to fire to your nukes.

e Youarelivinginthe 1970s and want to send a long letter to your lover on
ARPANET.

e Everythingelse (given the tools we've learned)

Thinking about encryption

What is a flaw with ECB encryption?

2DES

Key1 and key2 are 56-bit keys

Adversary knows the plaintext and the ciphertext
Strategy 1: brute force attack - 2'"2 possibilities
Strategy 2: meet-in-the-middle attack -
precompute 2 tables for Encrypt (P, Key1) and
Decrypt (C, Key2) and find the matching output,
2°¢* 2 = 2% possibilities

Plaintext

Keyt———| DES

Key2——| DES

Meet-in-the-middle attack

P > X > C
DES Key1 DES Key?2
K1 Encrypt(P, K1) Decrypt(C, K2)
1 Y Zi
2 Y Z>
256 Y256 2256

If YOI =Z[], We have found X. K1 = K] and K2 =
Kl

K2

Tipson HW2 Q9

e Shorter key length 24

e You are given a plaintext/ciphertext pair for finding the key, and another
ciphertext to decrypt and obtain the message

e Use des package with the function provided to you

from des import DesKey
def expandkey(val):
dfivall >= (255014)).
print ("Key too large! Must fit in 14 bits")
exit ()
k = val | (val << 14) | (val << 28) | (val << 42)
return DesKey (bytearray.fromhex ("{v:016X}".format (v=k)))

e Other functions that might be helpful from des:
encrypt(plaintext), decrypt(ciphertext), bytearray.fromhex()

Is encryption (confidentiality) enough?

Scenario: Yoshi wants to send out an email about exam times - and a hacker
has learned the encryption key

ok
=
“Final!!! N’
KNE 110 (B
Monday _

2:30PM” .
In this case, an adversary

AES 128-bit key, . doei” ttg;"nl anyﬁhlntgh
CBC mode Important by learning the
content of this message.

david@cs

Is encryption (confidentiality) enough?
But, the attacker could tamper with the message during transmission,
and the recipient would not know - so we need to ensure integrity

=, 77?

!-& “Final!!!
> KNE 110

. Saturday
Tampers with 12:30AM”

message in
transit

484 Student

MAC (Message Authentication Code)

Provides integrity and authentication: only someone who knows the
KEY can compute correct MAC for a given message.

MAC: message authentication code
(sometimes called a “tag”)

.°°
.oo

message, MAC(KEY,message)

Alice message g

L~
L] 0

J

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

When do we MAC?

- The good: The bad (& ugly):
I Encrypt-then-MAC Encrypt-and-MAC
Encrypt MAC is deterministic! Same
| MAC-then-encrypt plaintext — same MAC
C | MAC Not as good as .
l Encrypt-then-MAC I
0 T
T Encryptke MACkm
|

Encrypt-then-MAC C, T

How do we create a MAC?

CBC-MAC: Encrypt the message in CBC mode, use the last block as the MAC

ml m?2 mx
r \
Initialization 0 _.,éa {5 > {5
vectorisO
y \
k = secret key k—> E k—> E k—>{ E

result

*CBC-MAC is not the only MAC algorithm - today most use HMAC; we'll show why next

Last block of
ciphertext
used as MAC

Is CBC-MAC vulnerable?

e How could we find out?
e Cryptanalysis: using mathematical analysis to rigorously reason about a
cryptographic system

e Let'suse cryptanalysis to find a collision
e twodifferent inputs leading to the same MAC tag
e (violating collision resistance)

Exercise: CBC-MAC collision vulnerability

Suppose a and b are both one block long, and suppose the _ “

sender MACs a, b, and a || b with CBC-MAC.

An attacker who intercepts the MAC tags for these
messages can now forge the MAC for the message

b1l (M (b)eM.(a)®b)

which the sender never sent. The forged tag for this
message is equal to M, (a || b), the tag for a || b. Justify

mathematically why this is true. a|| b:aand b concatenated

MK(a): MAC for message a

EK(a): ciphertext for message a

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove: ErEE I

M.(b]| (M,(b)®M,(a) @ b)) = M,(a]| b)
D

Step 1: Figure out what M, (a), M, (b), and M, (a || b) 27 777
in terms of the encryption key. : :

Annotate sketch with the sender’s messages and
MACs.

77

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove:
M. (bl (M. (b)eM,(a)eb))=M,fall b)

M. (a)=E,(a)
MK(b) = EK(b) (not shown)
M,(a | b) = E,(E, (a)ob)

E,(E,(a)eb)

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove B LTS
M. (bl (M,(b)®M,(a)e b)) =M.(al| b)

Step 2: Figure out M, (b || (M, (b)® M, (a)®b)).

For the MAC of the attacker’s message
b|| (M, (b)eM,(a) @ b), what are the values of the ???'s?

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove T
M. (bl (M,(b)eM,(a)eb))=M(al| b)

M, (b [(M, (b)eM,(a) @ b))
=M (b || (E (b)®E,(a) @ b))

= E'{EK(b) ® EK(b) ® EK(a) ® b) These terms
cancel out

- . Thisisthe same as

=E(Ea)eD) M,fal| b)!

E (E,(a) @ b)

So what?

We can prove, just using the specification of CBC-MAC, that the
messages b || (M(b)® M(a) ® b) and a || b share the same tag. This
approach is acommon method used in cryptanalysis.

We broke the theoretical guarantee that no two different
messages will never share a tag.

If you were to use CBC-MAC in a protocaol, it provides
information about specific weaknesses and how not to use it.

Safer CBC-MAC for variable length messages

For a message mof length I n n

1. Construct s by prepending the length of mto the
message: s = concat(l, m) 9 69

2. Padsuntil the length is a multiple of the block size

3. Apply CBC-MAC to the padded strings.

4. OQutput the last ciphertext block, or a part of it. Don'’t ' '
output intermediates.

° : Appending to end is just as broken as what
we showed!

e Or encrypt output with another block cipher under a
different key (CMAC). Or use HMAC, UMAC, GMAC.

e Follow latest guidance very carefully!

Good luck with the rest of lab 1!

