
CSE 484 / M 584 Autumn 2020: Lab #3

Smart Homes Security Lab
Due: Friday, June 4th, 11:59pm
Turn in: Canvas assignment
Individual or group: Groups of up to 3 (as in prior labs)

Before you start
For this lab, you do not need to fill out a Google form, but you need to create an account at
https://cse484.cs.washington.edu/nidan/signup to sign up. You need to use your @uw.edu
email and your UW Net ID’s. No other email addresses are allowed. One account per
group -- just choose one of your UW email addresses. While we have taken basic measures
to secure the password you choose and we do not see it in plain text, we still recommend you
avoid reusing any real password from your other web accounts.

Additionally, portions of this lab require you to proxy your web traffic through a UW server, such
as attu. We recommend you dedicate Mozilla Firefox for this purpose, set up the proxy on it,
and only use that browser for the entirety of the lab. If something isn’t working, we recommend
first checking whether this proxy has been set up correctly. See the section “Helpful Tools and
Setup” below for instructions on how to set up the proxy. Other useful tips are below too; we
recommend reading the whole lab description before starting, and scanning back
through it whenever you get stuck.

Warning
During this lab, you will be allowed to search for and find real devices on the real Internet that
may or may not control real cyber-physical systems. Some of those may have real exploitable
vulnerabilities. You are not to interact with real devices or use the search feature in a
malicious way.

The devices you are supposed to be interacting with for the lab will be identifiable as belonging
to a UW organization and will have an ipv6 address. If in doubt, ask the TAs but do not attempt
to exploit or circumvent the security of any “real” devices you find through nidan.

Finally, security vulnerabilities in the implementation of the lab are specifically out of scope for
this lab. :)

https://cse484.cs.washington.edu/nidan/signup


Server Address
https://cse484.cs.washington.edu

What To Turn In
We will record your progress in our database when you have achieved each of the 5
checkpoints in the lab and you can see that progress reflected on your Profile page (You have
compromised X out of 5 devices.). However, you are also required to submit a pdf or txt to the
Canvas assignment that, for each device:

● Provides a one-sentence summary of what the device was and how it was vulnerable.
● Provides the command you ran or steps you took to compromise the device.
● Describes how that vulnerability can be mitigated.

Please note that there is an opportunity for partial credit here: if you can’t compromise a device,
please still submit what you tried and why you thought it might work.

Goal
The goal of this lab is to gain hands-on experience with penetration testing of Internet of Things
(IoT) devices as they might be deployed in a smart home. You will need to compromise a
sequence of such devices in order to achieve an adversarial goal. In this case, your end goal
is to cause a (simulated) fire in a smart home with a series of IoT devices by turning on a
(simulated) smart microwave over the Internet and without physical access.

The technical exploits you need to carry out are not as sophisticated as in previous labs. They
do not require advanced knowledge beyond a simple understanding of how the web and
computer networks work. Thus, the key to success in this lab is the ability to sift through
technical specifications to look for vulnerabilities and combine knowledge from different areas of
computer science in order to achieve your goals. These are skills that real adversaries use :)

Points
You can receive a total of 4 points per device, for a possible total of 20 points. The points are
distributed as follows:

● 1 point for compromising the device
● 1 point for providing a summary of the vulnerability (in the writeup)
● 1 point for providing the command you used to compromise the device (in the writeup)
● 1 point for a short description of how the vulnerability can be mitigated (in the writeup)

https://cse484.cs.washington.edu


Some Useful Background

What does a smart home network look like?

The router “hides” all devices behind the NAT:
● Only the router has an external IP.
● Requests from devices to the Internet get translated to appear as if they are coming from

a high port on the router.

Port forwarding:
● Devices (through UPnP) or the user (through the router command interface) can request

that they be exposed permanently to the Internet.
● In this case, the router allocates a persistent port and forwards all connections on that

port to the appropriate device (useful to allow external control).

Chaining vulnerabilities
● Even one device with a security vulnerability can serve as an entry point to

compromising the entire home.
○ Target Hackers Broke In Via HVAC Company (Krebs on Security)
○ How a Fish Tank Helped Hack a Casino (The Washington Post)

● You do not even need buffer overflows, web exploits or other highly technical
vulnerabilities. Some very common pitfalls (some may appear in this lab!):

○ Default credentials
○ Trusting that the device is only accessible on a LAN
○ Failure to authenticate physical-channel commands (e.g., audio)
○ Authorization tokens embedded in the open-sourced code of a controlling app
○ Fallacies in programming automation rules

https://en.wikipedia.org/wiki/Network_address_translation
https://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/


Backstory
Canvas Notification:
Hey Class! Come one, come all: The Amazon Smart Life Roadshow is rolling into town! This
fascinating, yet mildly terrifying display of latest and greatest Internet-of-Things (IoT) devices will
totally ~blow your mind.~ Bring your friends and your wallets and join your course TAs in
exploring how to retrofit your old-fashioned homes with a brand new Smart Home ecosystem!

News Alert:
With all the force of a great typhoon, Shodan has taken the world by storm. Shodan, or
shodan.io, is the premier search engine for IoT devices. Just as Google lets people sift through
endless streams of funny cat videos, Shodan returns pages of results containing
internet-connected devices: construction equipment, traffic lights, power plants, and baby
monitors halfway around the world… as well as their command interfaces. Stay tuned to see
how some Shodan hackers took over Seattle’s construction cranes and programmed them to do
the macarena!

Canvas Notification – Revision
So… the TAs went to the Amazon Smart Life Roadshow… and due to our salary constraints, we
have decided to build our own set of totally-legit, totally-secure Smart Devices! Why give your
money to Amazon, when you can give your money to us and use our totally-private
Husky-branded IoT devices! Just think: HuskyCam, HuskyRouter, HuskySpeaker, and so on. If
our system gains enough popularity, maybe the University will agree to deploy it to livestream
New Dubs frolicking in his playpen and stealing Officially Retired Dubs’ HuskyTreats!

News Alert:
Mysterious as the dark side of the moon, Nidan enters the scene of IoT search engines… Nidan
(cse484.cs.washington.edu) is a hand-crafted, artisanal, GMO-free platform devised by the Paul
G. Allen School of Computer Science & Engineering Computer Security and Privacy Top Secret
Developer Team (PGASCS&ECSPTSDT). Much like Shodan, it allows users to peruse real IoT
devices but can also help to ethically facilitate a CSE484 homework assignment ;) After the
commercial break, we ask experts why they think Nidan seems to be picking up on various
~wintery canine~ themed devices…

https://www.amazon.com/adlp/smartliferoadshow
https://shodan.io
https://shodan.io
https://cse484.cs.washington.edu


Specifications of the Husky Smart Home Technology

The Nidan Search Engine
The Nidan search engine -- accessible at https://cse484.cs.washington.edu/ -- provides a
subset of the functionality of the shodan.io search engine. We recommend you familiarize
yourself a bit with Shodan first. As students, you get some features for free if you sign up with
your .edu email. In particular, you can access the shodan book for free (follow the link in the
email you get after signing up for shodan with you .edu address to get the free version). You
don’t need to read this entire book, but you might find it helpful. If you have trouble accessing
the book, or do not wish to provide your email address, please email us let us know. The
following assumes you have a basic understanding of how the shodan search engine works.

The search functionality works as follows:
● A search query is made up of tokens separated by white spaces.
● Each token specifies an AND condition for the search (so the results are at the

intersection of the sets matched by the queries).
● If a token does not contain a colon (the character ‘:’), the term is interpreted as a

keyword to look for in a non-case sensitive manner in the data field of a device.
● If a token does contain a colon (the character ‘:’), there are two possibilities:

○ If the left-hand string does not begin with a minus (the character ‘-’), the token
is interpreted as a filter. The left-hand side of the filter specifies the field to filter
on and the right-hand side specifies the exact value that field should take on in
any matched results.

○ If the left-hand string begins with a minus, the token is also interpreted as a filter
but any devices matching the filter are excluded from the results.

● If a filter value contains white spaces, enclose it either in single or double quotes.
● The list of fields you can filter on are as follows (refer to the Shodan documentation on

what they mean)
○ transport
○ timestamp
○ port
○ asn
○ ip
○ org
○ isp
○ os
○ city
○ region_code
○ area_code
○ longitude
○ country_code
○ latitude

https://cse484.cs.washington.edu
https://leanpub.com/shodan


○ postal_code
○ dma_code
○ country_name

For instance, to find all devices containing the word “apache” in their header response, listening
at port 80, located in the United States but not in New York, you can use the query:

apache port:80 country_name:"United States" -city:"New York"

Hint: You will need to use Nidan as a starting point to find devices of interest that are publicly
accessible. (Remember not to actually attack any non-lab devices you may find…)

Caution: The web app of Nidan itself and the database backing it are not exploit targets for this
lab. We’d be happy to leave it up for you to play with and test your web security skills after the
lab is over, but do not attack it during the lab.

The Husky Speaker
Due to budgetary constraints in the development of the Husky Speaker, it provides a deceptively
simple, yet highly functional interface. It accepts POST requests with a single data field: url.
The speaker then accesses the URL and plays the requested file.

The format specifications for the file are as follows:
● flac file format
● <500 KB in size
● single channel

Anything that does not match those specifications will be rejected by the speaker.

The Husky Voice Assistant
The Husky Voice Assistant is the most exciting new entrant in the world of Google Home,
Cortana, Siri, and Alexa. It enables you to control a wide range of home devices simply with the
power of your voice. Just say the word and the Husky Voice Assistant will get it done!

In order to enable full transparency, the assistant allows anybody on the home network to read
what commands the speaker heard recently and how it reacted to them by accessing its web
interface. Unlike with some other smart speakers, the Husky Voice Assistant will never creepily
laugh at you without telling you why.

The HuskyCam Camera
This device amazes with its accessibility - you just need a simple username and password and
you can watch your home from wherever you are in the world. Make sure that your cat is eating

https://www.engadget.com/2018/03/07/amazon-is-fixing-alexa-creepy-laughter/?guccounter=1
https://www.engadget.com/2018/03/07/amazon-is-fixing-alexa-creepy-laughter/?guccounter=1


well while you are on vacation, check if the mail has come in, or just spy on other members of
your household - now all a simple login away!

You will be able to choose one of nine easy-to-remember username/password combinations
upon enrollment - and the best part is, you cannot change them and accidentally set a password
you’ll forget!

● (“root”, “xc3511"),
● (“root”, “vizxv”),
● (“root”, “admin”),
● (“root”, “888888"),
● (“root”, “default”),
● (“admin”, “123456"),
● (“admin”, “password”),
● (“admin”, “pass”),
● (“admin”, “1111111")

Helpful Tools and Setup

Proxy through ssh
You might not need to do this, if you are not on the UW network and you already have an IPv6
address assigned to you by your ISP. You can Google “What is my ip?” to check these things. If
you are connected through the UW network or do not have an IPv6 address, follow along.

MacOS and Linux

To set up an ssh proxy through a UW server, run the following command on your local
computer:

ssh -D <portnumber> <csenetid>@attu.cs.washington.edu

where <portnumber> is the port on your localhost that you want to use for your proxy and
<csenetid> is your CSE id that is authorized to access attu. For example, to set up a proxy on
port 1080 that tunnels traffic through johndoe’s account, run:

ssh -D 1080 johndoe@attu.cs.washington.edu

Note that this does not set up any program on your computer to use this proxy. It only makes it
available; to make your browser and other tools use it, read on.

https://www.google.com/search?q=what+is+my+ip


Windows
Follow these instructions to set up the proxy via PuTTY on Windows.

1. Go to Connection > SSH > Tunnels. Fill in 1080 for the Source port field. Then select
Dynamic and click Add. You should see a line in the text box that reads D1080 (or whatever
number you chose).



2. Go back to the Session tab, enter <username>@attu.cs.washington.edu, and optionally
name the session as attu and click Save so you can load it the next time without having to
explicitly re-enable the SOCKS proxy.



Browser
During the course of this lab, we recommend that you use Firefox. To set up Firefox to use the
proxy you deployed above, follow these steps:

1. Click on the sandwich menu in the top right corner to expand the browser’s menu. Then,
select “Preferences.”

https://www.mozilla.org/en-US/firefox/new/


2. Under “General,” scroll down to “Network Settings” or use the search bar to search for “proxy”



3. Select the “Manual proxy configuration option” and fill out only the SOCKS Host settings as
follows:

● type in localhost in the text field
● provide the port you used with the ssh -D command above, e.g. 1080

Make sure that all other fields (HTTP Proxy, SSL Proxy, FTP Proxy) are left blank.

Please, note: All of your Firefox traffic will now be tunneled through the UW server you picked
in the ssh -D command.

If you have not run the ssh -D command or if you have stopped it, your browser won’t be able
to access any web pages.

Additionally, with these settings, all of your web traffic on this browser, including for any
non-course related websites, will be proxied through UW’s server. Please, follow the CSE
computing use policy when browsing in this way or disable the proxy for any personal use.

Make sure you access the nidan site with https://.

Note for Windows Users:

https://www.cs.washington.edu/lab/policies-and-guidelines
https://www.cs.washington.edu/lab/policies-and-guidelines


If you have your Firefox and putty settings entered correctly, you can access the device HTML
through the ssh proxy and curl, and you still have issues connecting to devices through
Firefox, it may be a putty issue. We suggest:

1. Have one of your teammates who has a Unix installation already do the ssh tunnel and
work from their machine

2. Install a VM that runs a Unix system
3. Install Windows Subsystem for Linux

The curl Command
For some portions of the lab, you may need to use the curl command and proxy its traffic as
well. To run curl through a proxy, use the --socks5 option, e.g.

curl example.com --socks5 localhost:1080

Other useful options for curl for this lab are -X (specify the HTTP request type) and -d (specify
the data payload sent with the request). You can find out more in the man pages.

Dealing with IPv6 Addresses
IPv6 addresses, when typed into a browser or given to curl, need to be enclosed in square
brackets ([, ]). When you do that with curl, you also need to give it the -g option. For example,
to access ip 2607:4000:200:15:1234:5670:abcd:ef12 at port 8000, you need to type
in:

● in your browser: http://[2607:4000:200:15:1234:5670:abcd:ef12]:8000
● in curl: curl -g http://[2607:4000:200:15:1234:5670:abcd:ef12]:8000

Audio Files
For a portion of this lab, you may need to record your own voice. You can do that with any
software you are comfortable with. For Mac, the QuickTimePlayer is easy to use and readily
available but it does not produce the needed format. For a cross-platform piece of software, you
can use VLC (it also lets you do conversions). You may also find https://ffmpeg.org/ useful for
conversions, if you prefer (but VLC should suffice).

You may host these audio files on any publicly accessible URL and you should already have
experience from the previous lab with hosting files on your CSE home page. Treat the audio file
as any other static file you’d like to serve from your home directory. If you are getting errors
around the type of file you are submitting, you are probably on the right track, but read the
specifications for the HuskySpeaker carefully.

http://www.mit.edu/afs.new/sipb/user/ssen/src/curl-7.11.1/docs/curl.html
https://ffmpeg.org/


FAQs and Errata
Please, monitor the EdStem discussion board. We will update this with frequently asked
questions and lab bugs that you should be aware of.


