
CSE 484: Computer Security and Privacy

Cryptography
[Symmetric Encryption]

Fall 2021

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

How Cryptosystems Work Today

• Layered approach: Cryptographic protocols (like “CBC mode encryption”) built on
top of cryptographic primitives (like “block ciphers”)

• Flavors of cryptography: Symmetric (private key) and asymmetric (public key)

• Public algorithms (Kerckhoff’s Principle)

• Security proofs based on assumptions (not this course)

• Be careful about inventing your own! (If you just want to use some crypto in your
system, use vetted libraries!)

10/14/2021 CSE 484 - Fall 2021 2

The Cryptosystem Stack

• Primitives:
• AES / DES / etc
• RSA / ElGamal / Elliptic Curve (ed25519)

• Modes:
• Block modes (CBC, ECB, CTR, GCM, …)
• Padding structures

• Protocols:
• TLS / SSL / SSH / etc

• Usage of Protocols:
• Browser security
• Secure remote logins

10/14/2021 CSE 484 - Fall 2021 3

Kerckhoff’s Principle

• Security of a cryptographic object should depend only on the secrecy
of the secret (private) key.

• Security should not depend on the secrecy of the algorithm itself.

• Foreshadow: Need for randomness – the key to keep private

10/14/2021 CSE 484 - Fall 2021 4

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Hard concept to understand, and revolutionary! Inventors won Turing Award
☺

10/14/2021 CSE 484 - Fall 2021 5

Symmetric Setting

10/14/2021 CSE 484 - Fall 2021 6

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

Asymmetric Setting

10/14/2021 CSE 484 - Fall 2021 7

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

10/14/2021 CSE 484 - Fall 2021 8

Received April 4, 1977

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

10/14/2021 CSE 484 - Fall 2021 9

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

10/14/2021 CSE 484 - Fall 2021 10

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

• Key building block: Randomness – something that the adversaries
won’t know and can’t predict and can’t figure out

10/14/2021 CSE 484 - Fall 2021 11

Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)

10/14/2021 CSE 484 - Fall 2021 12

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

• Problem: don’t use rand() for security-critical applications!
• Given a few sample outputs, you can predict subsequent ones

10/14/2021 CSE 484 - Fall 2021 13

10/14/2021 CSE 484 - Fall 2021 14

10/14/2021 CSE 484 - Fall 2021 15

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all
system updates

10/14/2021 CSE 484 - Fall 2021 16

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

A recent example: keypair

• keypair is a JS library for generating (asymmetric) keypairs

10/14/2021 CSE 484 - Fall 2021 17

https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/

The output from the Lehmer LCG is encoded incorrectly. The specific line with the flaw is:

b.putByte(String.fromCharCode(next & 0xFF))

The definition of putByte is
[…]putByte = function(b) { this.data += String.fromCharCode(b); };

Since we are masking with 0xFF, we can determine that 97% of the output from the LCG are converted to zeros. The
only outputs that result in meaningful values are outputs 48 through 57, inclusive.

The impact is that each byte in the RNG seed has a 97% chance of being 0 due to incorrect conversion. When it is not,
the bytes are 0 through 9.

How might we get “good” random numbers?

10/14/2021 CSE 484 - Spring 2021 18

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically
secure pseudorandom numbers”

• Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

10/14/2021 CSE 484 - Spring 2021 19

Obtaining Pseudorandom Numbers

• Linux:
• /dev/random – blocking (waits for enough entropy)

• /dev/urandom – nonblocking, possibly less entropy

• getrandom() – syscall! – by default, blocking

• Internally:
• Entropy pool gathered from multiple sources

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs

10/14/2021 CSE 484 - Spring 2021 20

Obtaining Random Numbers

• Better idea:
• AMD/Intel’s on-chip random number generator

• RDRAND

• Hopefully no hardware bugs!

10/14/2021 CSE 484 - Spring 2021 21

Back to encryption

10/14/2021 CSE 484 - Fall 2021 22

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.

10/14/2021 CSE 484 - Spring 2021 23

?

Ignore for now: How is this achieved in practice??

One weird bit-level trick

• XOR!
• Just XOR with a random bit!

• Why?
• Uniform output

• Independent of ‘message’ bit

10/14/2021 CSE 484 - Spring 2021 24

One-Time Pad

10/14/2021 CSE 484 - Spring 2021 25

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

• Easy to compute
• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

• As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s

computational resources

• …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?

10/14/2021 CSE 484 - Spring 2021 26

Problems with the One-Time Pad?

• Breakout Discussions

• What potential security problems do you see with the one-time pad?

• (Try not to look ahead and next slides)

• Recall two key goals of cryptography: confidentiality and integrity

10/14/2021 CSE 484 - Spring 2021 27

Dangers of Reuse

10/14/2021 CSE 484 - Spring 2021 28

= 00000000…

= 00110010…

00110010…
00110010… =


00000000…P1

C1

= 11111111…

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) =
(P1P2)(KK) = P1P2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

10/14/2021 CSE 484 - Spring 2021 29

Integrity?

10/14/2021 CSE 484 - Spring 2021 30

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily change it to something else

10/14/2021 CSE 484 - Spring 2021 31

