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Admin

* Lab 3 due Wednesday

 Last extra credit reading due Friday
* No late days

* Final project due 12/13

* No late days
* Make sure you:
* Include references
* Include at least one legal/ethics discussion slide
* Create original content
* Go beyond class materials (if it’s a topic we also covered)

12/5/2021 CSE 484 - Fall 2021



Admin

* Final day?
e Pollev.com/dkohlbre



Course Eval

e Please fill out the course evaluation!
* https://uw.iasystem.org/survey/249000
 Or check email

* In fact, lets do that now ©
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Side-channels: conceptually

* A program’s implementation (that is, the final compiled version +
hardware) is different from the conceptual description

* Side-effects of the difference between the implementation and
conception can reveal unexpected information

 Thus: Side-channels



Cache side-channels

 ldea: The cache’s current state implies something about prior
memory accesses

* Insight: Prior memory accesses can tell you a lot about a program!



Many thanks to Craig Disselkoen for the animations.
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FLUSH + RELOAD

* Even simpler!
e Kick line L out of cache
e Let victim run

* Access L
e Fast? Victim touched it
e Slow? Victim didn’t touch it



Spectre + Friends

AP

* First reported in 2017

e Disclosed in 2018

* https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html

* Novel class of attack: speculative execution attacks
* Aka: Spectre-class attacks

* (Academic paper published 2019... long story)
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Two pieces of background

e Cache attacks (last week)

» Speculative execution (right now!)



Speculative Execution (the fast version)

* All modern processors are capable of speculative execution
* How much, in what ways, and when differs

* Speculative execution allows a processor to ‘guess’ about the result of
an instruction
* And either confirm or correct itself later

* A branch predictor bases a guess on the program’s previous behavior



Example: Speculate on branch

int foo(int* address){
int y = globalarray[0];
int X = *address;
if( x < 100 ){
y = globalarray[10];
}

return y;
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Example: Speculate on branch

int foo(int* address){
int y = globalarray[0];
int X = *address;
if( x < 100 ){
y = globalarray[10];

}

return y;
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Example: Speculate on indirect branch

int caller(int(*fptr)()){ int foo(){
return 10;
int y = fptr(); }
return vy; int bar(){
} return 9O;



What happens when we speculate wrong?

e Eventually, a squash occurs
* All work done under the incorrect guess is undone

A/

* Bad guess on branch?
* Undo everything in the branch!
* Undo everything related!

* World reverts back to before guess ...almost
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Example: Speculate on branch

int foo(int* address){
int y = globalarray[@]; // Brought into cache
int X = *address; // Brought into cache
if( x < 100 ){
y = globalarray[10]; // Brought into cache maybe

}

return y;



Speculative attacks

Three stages:
1. Mistrain predictor
2. Run mistrained code with adversarial input

3. Recover leftover state information



Spectre variant 1

* “Bounds-check bypass”
if( x < len(array))
array|[x];



Spectre variant 1

e “Bounds-check bypass”
if( x < len(array))
array2[array[x] * 4096];



Spectre variant 2

* “Branch target injection”

int caller(int(*fptr)()){
int y = fptP(X);

return vy;

int foo(x){
array2[arrayl[x] * 4096];

int bar(x){
return Xx;
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What about ‘Meltdown’?

 Also called Spectre variant 3 (“rogue data cache load”)

 Spectre v1/v2 require the victim program to have the vulnerable code
pattern

* Just like the victim program has to have a buffer overflow!
* Spectre is a global problem with speculation conceptually

* Meltdown allows the attacking program to do whatever it wants!



Meltdown: An Intel specific problem

* Memory permissions weren’t checked during speculation
* At least for some cases

"Imagine the following instruction executed in usermode
mov rax, [somekernelmodeaddress]
It will cause an interrupt when retired, [...]"
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Click on the various components to interact with them. The full interactive version can be found here and the raw SVG can be found here. There is also a
more vibrant colored version (the one used in our paper), which can be found here. These diagrams have been made by Stephan van Schaik (¥
@themadstephan).

https://mdsattacks.com/
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Canvas

* Browsers had to scramble to deal with Spectre type vulnerabilities as
they were exploitable from webpages and allowed for arbitrary
memory reads.

* How would you have tried to handle receiving a disclosure like this as
the browser vendors?

* You can either discuss technical ideas or policy objectives for a
strategy to handle the vulnerabilities.



Defenses

* Disable User/Kernel memory space sharing
* KAISER defense

* “Fence” dangerous code patterns
e Extra instruction that block speculation past some point

* Microcode updates for processors
* MDS-class fixes



Speculative Attacks wrapup

e Spectre vulnerabilities are here to stay, for a long time

 MDS+Meltdown (hopefully) aren’t



