CSE 484 : Computer Security and Privacy

(More) Side Channel Attacks

Fall 2021

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides
and materials ...

mailto:dkohlbre@cs.washington.edu

Admin

* Lab 3 due Wednesday

 Last extra credit reading due Friday
* No late days

* Final project due 12/13

* No late days
* Make sure you:
* Include references
* Include at least one legal/ethics discussion slide
* Create original content
* Go beyond class materials (if it’s a topic we also covered)

12/5/2021 CSE 484 - Fall 2021

Admin

* Final day?
e Pollev.com/dkohlbre

Course Eval

e Please fill out the course evaluation!
* https://uw.iasystem.org/survey/249000
 Or check email

* In fact, lets do that now ©

12/5/2021 CSE 484 - Fall 2021

https://uw.iasystem.org/survey/249000

Side-channels: conceptually

* A program’s implementation (that is, the final compiled version +
hardware) is different from the conceptual description

* Side-effects of the difference between the implementation and
conception can reveal unexpected information

 Thus: Side-channels

Cache side-channels

 ldea: The cache’s current state implies something about prior
memory accesses

* Insight: Prior memory accesses can tell you a lot about a program!

Many thanks to Craig Disselkoen for the animations.

Pre-Attack Active Attack Analysis
Prime ! [T|med]
Timing threshold Wait= = = = = = = = Victim access if
targeted Pr|me targeted . hreshold
Eviction set set set time > thresho

I
I
*Vlctim accesses targeted set
I
I
I
I

PRIME+PROB FLUSH+RELOAD
uires sﬁared memor

Cache set O Ie I

10, Pre-existing data - Attacker’s data_ . V|ct|m s data

Cache set 2

FLUSH + RELOAD

* Even simpler!
e Kick line L out of cache
e Let victim run

* Access L
e Fast? Victim touched it
e Slow? Victim didn’t touch it

Spectre + Friends

AP

* First reported in 2017

e Disclosed in 2018

* https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html

* Novel class of attack: speculative execution attacks
* Aka: Spectre-class attacks

* (Academic paper published 2019... long story)

12/5/2021 CSE 484 - Fall 2021

Two pieces of background

e Cache attacks (last week)

» Speculative execution (right now!)

Speculative Execution (the fast version)

* All modern processors are capable of speculative execution
* How much, in what ways, and when differs

* Speculative execution allows a processor to ‘guess’ about the result of
an instruction
* And either confirm or correct itself later

* A branch predictor bases a guess on the program’s previous behavior

Example: Speculate on branch

int foo(int* address){
int y = globalarray[0];
int X = *address;
if(x < 100){
y = globalarray[10];
}

return y;

Example: Speculate on branch

int foo(int* address){
int y = globalarray[0];
int X = *address;
if(x < 100){
y = globalarray[10];

}

return y;

Example: Speculate on branch

int foo(int* address){
int y = globalarray[0];
int X = *address;
if(x < 100){
y = globalarray[10];

}

return y;

12/5/2021 CSE 484 - Fall 2021

Example: Speculate on indirect branch

int caller(int(*fptr)()){ int foo(){
return 10;
int y = fptr(); }
return vy; int bar(){
} return 9O;

What happens when we speculate wrong?

e Eventually, a squash occurs
* All work done under the incorrect guess is undone

A/

* Bad guess on branch?
* Undo everything in the branch!
* Undo everything related!

* World reverts back to before guess ...almost

12/5/2021 CSE 484 - Fall 2021

16

Example: Speculate on branch

int foo(int* address){
int y = globalarray[@]; // Brought into cache
int X = *address; // Brought into cache
if(x < 100){
y = globalarray[10]; // Brought into cache maybe

}

return y;

Speculative attacks

Three stages:
1. Mistrain predictor
2. Run mistrained code with adversarial input

3. Recover leftover state information

Spectre variant 1

* “Bounds-check bypass”
if(x < len(array))
array|[x];

Spectre variant 1

e “Bounds-check bypass”
if(x < len(array))
array2[array[x] * 4096];

Spectre variant 2

* “Branch target injection”

int caller(int(*fptr)()){
int y = fptP(X);

return vy;

int foo(x){
array2[arrayl[x] * 4096];

int bar(x){
return Xx;

It’s A Party

in-place (IP) vs., out-of-place (0P} PHT-CA-IP &)
mistraining Cross-address-space PHT-CA-OP % J
sfrategy
e Same-address-space PHT-SA-IP [52, 50])
| | PHT-SA-OP %)
microarchitec-

Spectre-BTB

purat bujer Spectre-RSB Cross-address-space)<E ittt J
Spectre-type Spectre-STL [32]) Same-address-space BTB-CA-OP [52] J
BTB-SA-IP %)

Cross-address-space BTB-SA-OP [18] _]

Same-address-space RSB-CA-IP [62, 54]]

RSB-CA-OP [54])

Meltdown-NM [83])

Meltdown-US [59])

RSB-SA-IP [62])

3

Meltdown-P [90, 93])

Melidown-RW [50]) RSB-SA-OP [62, 541)

T

Meltdown-PK %)

“Wetdowaxo s More and more:

L T T T W e T T W M e P P . i -)

Meldown-SM %« | ® Foreshadow — attacks SGX

Meltdown-BR)TLLM““"M'WX[“U ® SPOILER — mem dependence
)

Meltdown-GP [10, 40] Meltdown-BND &)
12/5/202.[From Canella et al.] ot o v

® Etc. etc.

What about ‘Meltdown’?

 Also called Spectre variant 3 (“rogue data cache load”)

 Spectre v1/v2 require the victim program to have the vulnerable code
pattern

* Just like the victim program has to have a buffer overflow!
* Spectre is a global problem with speculation conceptually

* Meltdown allows the attacking program to do whatever it wants!

Meltdown: An Intel specific problem

* Memory permissions weren’t checked during speculation
* At least for some cases

"Imagine the following instruction executed in usermode
mov rax, [somekernelmodeaddress]
It will cause an interrupt when retired, [...]"

. @ant end : ©)] I"u"lF.-n’n::r'j,.-r PIPE|II"IE " ¥ @ Out-of-Order Englne

D Instructian o Llicache [=] [L2 Cache 1 i

b Predecade & Fetch A2 kiB =2 256 kiB i i

L (16 bytes) ' Bway |=| |® d-way b E

i ; & MOPs i Tnstruction . Execution Units ¥ ;

H H Instruction qUeue } &JE%Q: E L1;|2C;:'|E m“ E | @ m 1

0 H r v 1

o 2%25 entries i o HER " <[V IMT AL ;-

8 { Ma:]ru : @ | Bway {1{! EI'I":ﬂES:I 1 [CIDAET] ﬁ i

i : Fusian i i . T S S [AGU | INT ALL i i " gpu gzu

P T e o i P e e I.Eﬂ_ VEC ” i y e e

P | 5 MOPs Lo ; SHUFFLE| | = ;

P Eranch N ! [INT ALU = . System Agent
E | s f S-Wﬂjl' Decoder Erediction | ! loads | Lezach BualTer F‘h'_-.rsical i INT DIV MLEI:'LU . Display
L || rom = E" S vl w]l vl w Unit d {72 motrias) Register File : TN Lo Controller
I i d] ALLT) 0

N R 2|1 3(222 |[retuemstaei]| Store & Forward Buffer Integer g | [FErMA INTMOL] | |

Vo = i |__Bufer | : ST {56 entries) Registers 3 —EE% ' . PCle
P q Branch i (1ED entries) 2 ! -‘ﬁg&.‘,— TEEFEEED F:E:F:EL b

8 § B 5 B B [lretiel] i pnaer| fronchOrde Bufe o ||| g (= 2352355 2 Bmsani Memory
i ; = o Carie 1 3 {38 entries] Registers H— W § R BERR........... Contraller
o w l: 5K pOPs : {OPs Re-order Bufter (1BE entries) § ;

| & HOPS % AHOPS | g gay |0 e L) HOP Scheduler : gup:: gErL;

C] Retirement Linit Unified Reservation Statlon (97 entries)

' N Multiplexer i] Register Alias Table -

i]] Frimary || Shadow ; r

E 0 Stack Engine Allocation Queue E : ‘ S

P E {264 entries)] | : s

i Micro | [+ ‘s pops Register |)

- Fusion| | i : Allocation & Renaming ;

Click on the various components to interact with them. The full interactive version can be found here and the raw SVG can be found here. There is also a
more vibrant colored version (the one used in our paper), which can be found here. These diagrams have been made by Stephan van Schaik (¥
@themadstephan).

https://mdsattacks.com/

12/5/2021 CSE 484 - Fall 2021

Canvas

* Browsers had to scramble to deal with Spectre type vulnerabilities as
they were exploitable from webpages and allowed for arbitrary
memory reads.

* How would you have tried to handle receiving a disclosure like this as
the browser vendors?

* You can either discuss technical ideas or policy objectives for a
strategy to handle the vulnerabilities.

Defenses

* Disable User/Kernel memory space sharing
* KAISER defense

* “Fence” dangerous code patterns
e Extra instruction that block speculation past some point

* Microcode updates for processors
* MDS-class fixes

Speculative Attacks wrapup

e Spectre vulnerabilities are here to stay, for a long time

 MDS+Meltdown (hopefully) aren’t

