
CSE 484: Computer Security and Privacy

Mobile Devices

Fall 2021

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner,
Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others
for sample slides and materials ...

Admin

• Lab 2 due tonight

• HW3 is out (short, but do it soon!)

• Lab 3 will be out next week

Onion Routing

11/18/2021 CSE 484 - Winter 2021 3

R4

R1

R2
R3

Bob
Alice

{R2,k1}pk(R1),{ }k1

{R3,k2}pk(R2),{ }k2

{R4,k3}pk(R3),{ }k3

{B,k4}pk(R4),{ }k4

{M}pk(B)

• Routing info for each link encrypted with router’s public key

• Each router learns only the identity of the next router

Location Hidden Service

• Goal: deploy a server on the Internet that anyone can connect to
without knowing where it is or who runs it

• Accessible from anywhere

• Resistant to censorship

• Can survive a full-blown DoS attack

• Resistant to physical attack
• Can’t find the physical server!

11/18/2021 CSE 484 - Winter 2021 4

Issues and Notes of Caution

• Passive traffic analysis
• Infer from network traffic who is talking to whom
• To hide your traffic, must carry other people’s traffic!

• Active traffic analysis
• Inject packets or put a timing signature on packet flow

• Compromise of network nodes
• Attacker may compromise some routers

• Powerful adversaries may compromise “too many”
• It is not obvious which nodes have been compromised

• Attacker may be passively logging traffic
• Better not to trust any individual router

• Assume that some fraction of routers is good, don’t know which

11/18/2021 CSE 484 - Winter 2021 5

Issues and Notes of Caution

• Tor isn’t completely effective by itself
• Tracking cookies, fingerprinting, etc.

• Exit nodes can see everything!

11/18/2021 CSE 484 - Winter 2021 6

Issues and Notes of Caution

• The simple act of using Tor could make one a target for additional
surveillance

• Hosting an exit node could result in illegal activity coming from your
machine

• Tor not designed to protect against adversaries with the capabilities
of a nation state (public statement by designers, at least in the past)

11/18/2021 CSE 484 - Winter 2021 7

Mobile devices

What is the difference?

• Mobile devices (smartphones)

• Tablets

• Laptops

• Desktops

• Servers

A surprising difference

Mobile security is really really good

A surprising difference

Mobile security is really really good

Why?

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

11/18/2021 CSE 484 - Spring 2021 13

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

11/18/2021 CSE 484 - Spring 2021 14

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

11/18/2021 CSE 484 - Spring 2021 15

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Applications are isolated
• Each runs in a separate execution context

• No default access to file system, devices, etc.

• Different than traditional OSes where multiple applications run with the
same user permissions!

• App Store: approval process for applications
• Market: Vendor controlled/Open

• App signing: Vendor-issued/self-signed

• User approval of permissions

11/18/2021 CSE 484 - Spring 2021 16

Why isolate on mobile devices and not PCs?

• Application isolation is great!

• Phones drew lessons from desktops

• Desktops draw lessons from phones

• Browsers learning too

• App Isolation sometimes available for PCs
• Windows 10 Sandbox (May 2019)
• Prerequisites

• Windows 10 May 2019 update version 1903 installed
• Hardware virtualization enabled
• Windows 10 Pro or Enterprise

• Browsers: Site Isolation

11/18/2021 CSE 484 - Spring 2021 17

More Details: Android

• Based on Linux

• Application sandboxes
• Applications run as

separate UIDs, in separate processes.

• Memory corruption errors only

lead to arbitrary code execution

in the context of the particular

application, not complete system compromise!

• (Can still escape sandbox – but must
compromise Linux kernel to do so.) allows
rooting

11/18/2021 CSE 484 - Spring 2021 18

Challenges with Isolated Apps

So mobile platforms isolate applications for security, but…

1. Permissions: How can applications access sensitive resources?

2. Communication: How can applications communicate with each
other?

11/18/2021 CSE 484 - Spring 2021 19

Mobile Malware: Threat Modeling

Q1: How might malware authors get malware onto phones?

Q2: What are some goals that mobile device malware authors might
have, or technical attacks they might attempt? How might this differ
from desktop settings?

11/18/2021 CSE 484 - Spring 2021 20

What can go wrong?
“Threat Model” 1: Malicious applications

11/18/2021 CSE 484 - Spring 2021 21

What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
• Premium SMS messages

• Track location

• Record phone calls

• Log SMS

• Steal data

• Phishing

11/18/2021 CSE 484 - Spring 2021 22

Some of these are unique
to phones (SMS, rich

sensor data)

What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
• User data is leaked or stolen

• (on phone, on network, on server)

• Application is hijacked by an attacker

11/18/2021 CSE 484 - Spring 2021 23

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such attacks by
limiting applications’ access to:
– System Resources (clipboard, file system).

– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

11/18/2021 CSE 484 - Spring 2021 24

How should operating system grant
permissions to applications?

Android’s old approach: Manifests

• Big list of things the app wants at install time

Are Manifests Usable?

Do users pay attention to permissions?

11/18/2021 CSE 484 - Spring 2021 26

[Felt et al.]

… but 88% of users looked at reviews.

Are Manifests Usable?

Do users understand the warnings?

11/18/2021 CSE 484 - Spring 2021 27

[Felt et al.]

Are Manifests Usable?

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

11/18/2021 CSE 484 - Spring 2021 28

[Felt et al.]

State of the Art

11/18/2021 CSE 484 - Spring 2021 29

Prompts (time-of-use) Manifests (install-time, old model)

State of the Art (iOS)

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/accessing-user-data/

(2) Inter-Process Communication

• Primary mechanism in Android: Intents
• Sent between application components

• e.g., with startActivity(intent)

• Explicit: specify component name
• e.g., com.example.testApp.MainActivity

• Implicit: specify action (e.g., ACTION_VIEW) and/or data
(URI and MIME type)
• Apps specify Intent Filters for their components.

11/18/2021 CSE 484 - Spring 2021 31

Eavesdropping and Spoofing

• Buggy apps might accidentally:
• Expose their component-to-component messages publicly → eavesdropping

• Act on unauthorized messages they receive → spoofing

11/18/2021 CSE 484 - Spring 2021 32

[Chin et al.]

Permission Re-Delegation

• An application without a
permission gains additional
privileges through another
application.

• Settings application is deputy: has
permissions, and accidentally
exposes APIs that use those
permissions.

11/18/2021 CSE 484 - Spring 2021 33

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

Other Android Security Features

• Secure hardware

• Full disk encryption

• Modern memory protections (e.g., ASLR, non-executable stack)

• Application signing

• App store review

11/18/2021 CSE 484 - Spring 2021 35

File Permissions

• Files written by one application cannot be read by other applications
• Previously, this wasn’t true for files stored on the SD card (world readable!) –

Android cracked down on this

• It is possible to do full file system encryption
• Key = Password/PIN combined with salt, hashed

11/18/2021 CSE 484 - Spring 2021 36

Memory Management

• Address Space Layout Randomization to randomize addresses on
stack

• Hardware-based No eXecute (NX) to prevent code execution on
stack/heap

• Stack guard derivative

• Some defenses against double free bugs (based on OpenBSD’s
dmalloc() function)

• etc.
[See http://source.android.com/tech/security/index.html]

11/18/2021 CSE 484 - Spring 2021 37

http://source.android.com/tech/security/index.html

Android Fragmentation
• Many different variants of

Android (unlike iOS)
• Motorola, HTC, Samsung, …

• Less secure ecosystem
• Inconsistent or incorrect

implementations

• Slow to propagate kernel
updates and new versions

• Many changes made in past few
years (e.g. Project Treble)

[https://developer.android.com/about/dashboa
rds/index.html]

11/18/2021 CSE 484 - Spring 2021 38

Rooting and Jailbreaking

• Allows user to run applications with root privileges
• e.g., modify/delete system files, app management, CPU management,

network management, etc.

• Done by exploiting vulnerability in firmware to install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
• Doesn’t allow “side-loading” apps, etc.

11/18/2021 CSE 484 - Spring 2021 39

What about iOS?

• Apps are sandboxed

• Encrypted user data
• Often in the news…

• App Store review process is
(was? maybe?) stricter
• But not infallible: e.g., see Wang

et al. “Jekyll on iOS: When
Benign Apps Become Evil”
(USENIX Security 2013)

11/18/2021 CSE 484 - Spring 2021 40

• No “sideloading” apps

– Unless you jailbreak

iOS model vs Android

• Monolithic vs fragmented

• Closed vs open

• Single distributor vs many

11/18/2021 CSE 484 - Spring 2021 41

Lessons Being Learned from Other Spaces

• Mobile phone platforms built on lessons learned from desktops

• Desktops and Browsers learning from Mobile phones

• Overall, trying to increase security for all platforms

11/18/2021 CSE 484 - Spring 2021 42

