
CSE 484: Computer Security and Privacy

Web Security

Fall 2021

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Administrivia

• Lab2 is out, due Friday 11/19

• Final Project deadline 1 Friday
• Take a look at the syllabus for more information

11/8/2021 CSE 484 - Fall 2021 2

SQL Injection: Basic Idea

11/8/2021 CSE 484 - Spring 2021 3

Victim server

Victim SQL DB

Attacker

unintended
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end

database changes the meaning of query

• Special case of command injection

Using SQL Injection to Log In

• User gives username ’ OR 1=1 --

• Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘ ’ OR 1=1 -- …);

• Now all records match the query, so the result is not empty correct
“authentication”!

11/8/2021 CSE 484 - Spring 2021 4

Always true! Everything after -- is ignored!

Preventing SQL Injection

• Validate all inputs
• Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form becoming part of the
query code
• E.g.: escape(O’Connor) = O\’Connor

• Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything accidentally not
checked / escaped?

11/8/2021 CSE 484 - Spring 2021 5

Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)

11/8/2021 CSE 484 - Spring 2021 6

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Wait, why not do that for XSS?

• “Prepared statements for HTML”?

11/8/2021 CSE 484 - Spring 2021 7

Data-as-code

• XSS

• SQL Injection

• (Like buffer overflows)

11/8/2021 CSE 484 - Spring 2021 8

Cross-Site Request Forgery
(CSRF/XSRF)

11/8/2021 CSE 484 - Spring 2021 9

Cookie-Based Authentication Review

11/8/2021 CSE 484 - Spring 2021 10

ServerBrowser

Browser Sandbox Review

• Based on the same origin policy (SOP)

• Active content (scripts) can send anywhere!
• For example, can submit a POST request

• Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin
• … but you can do a lot with just sending!

11/8/2021 CSE 484 - Spring 2021 11

Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off
• Session cookie remains in browser state

• User then visits a malicious website containing
<form name=BillPayForm

action=http://bank.com/BillPay.php>

<input name=recipient value=attacker> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side effects can
happen

11/8/2021 CSE 484 - Spring 2021 12

Cookies in Forged Requests

11/8/2021 CSE 484 - Spring 2021 13

User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E

Impact

• Hijack any ongoing session (if no protection)
• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click

purchase

• Reprogram the user’s home router

• Login to the attacker’s account
• Why?

11/8/2021 CSE 484 - Spring 2021 15

XSRF True Story

11/8/2021 CSE 484 - Spring 2021 16

[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications

XSRF (aka CSRF): Summary

11/8/2021 CSE 484 - Spring 2021 17

Attack server

Server victim

User victim

1

2

4

Q: how long do you stay logged on to Gmail? Financial sites?

Broader View of XSRF

• Abuse of cross-site data export
• SOP does not control data export

• Malicious webpage can initiates requests from the user’s browser to an
honest server

• Server thinks requests are part of the established session between the
browser and the server (automatically sends cookies)

11/8/2021 CSE 484 - Spring 2021 18

XSRF Defenses

11/8/2021 CSE 484 - Spring 2021 19

• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
• Token often based on user’s session ID

• Server must verify correctness of token before executing sensitive operations

• Why does this work?
• Same-origin policy: attacker can’t read token out of legitimate forms loaded

in user’s browser, so can’t create fake forms with correct token

11/8/2021 CSE 484 - Spring 2021 20

<input type=hidden value=23a3af01b>

Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required

11/8/2021 CSE 484 - Spring 2021 21

Referer:
http://www.facebook.com/home.php

Referer:
http://www.evil.com/attack.html

Referer:

✓

?

Why Not Always Strict Checking?

• Why might the referer header be suppressed?
• Stripped by the organization’s network filter

• Stripped by the local machine

• Stripped by the browser for HTTPS → HTTP transitions

• User preference in browser

• Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF
defenses today

11/8/2021 CSE 484 - Spring 2021 22

Authentication

11/8/2021 CSE 484 - Fall 2021 23

Basic Problem

11/8/2021 CSE 484 - Spring 2021 24

?

How do you prove to someone that
you are who you claim to be?

Any system with access control must solve this problem.

Many Ways to Prove Who You Are

• What you know
• Passwords

• Answers to questions that only you know

• Where you are
• IP address, geolocation

• What you are
• Biometrics

• What you have
• Secure tokens, mobile devices

11/8/2021 CSE 484 - Spring 2021 25

A slightly more fundamental question

• What are we trying to prove?

11/8/2021 CSE 484 - Spring 2021 26

Passwords and Computer Security

• In 2012, 76% of network intrusions exploited weak or
stolen credentials (username/password)
• Source: Verizon Data Breach Investigations Report

• In Mitnick’s “Art of Intrusion” 8 out of 9 exploits
involve password stealing and/or cracking

• First step after any successful intrusion: install sniffer
or keylogger to steal more passwords

• Second step: run cracking tools on password files
• Cracking needed because modern systems usually do not

store passwords in the clear

11/8/2021 CSE 484 - Spring 2021 27

UNIX-Style Passwords

• How should we store passwords on a server?
• In cleartext?

• Encrypted?

• Hashed?

11/8/2021 CSE 484 - Spring 2021 28

t4h97t4m43
fa6326b1c2
N53uhjr438
Hgg658n53
…

user

system password file
“cypherpunk”

hash
function

Password Hashing

• Instead of user password, store H(password)

• When user enters password, compute its hash and compare with
entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

• Which would be possible if the passwords were encrypted

• Hash function H must have some properties
• One-way: given H(password), hard to find password

• No known algorithm better than trial and error

• “Slow” to compute

11/8/2021 CSE 484 - Spring 2021 29

UNIX Password System

• Approach: Hash passwords

• Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and 32 punctuation

symbols, there are 948 == 6 quadrillion possible 8-character passwords
(~252)

• BUT: Humans like to use dictionary words, human and pet names ==
1 million common passwords

11/8/2021 CSE 484 - Spring 2021 30

Dictionary Attack

• Dictionary attack is possible because many passwords come from a
small dictionary
• Attacker can pre-compute H(word) for every word in the dictionary – this only

needs to be done once!
• This is an offline attack

• Once password file is obtained, cracking is instantaneous

• Sophisticated password guessing tools are available
• Take into account freq. of letters, password patterns, etc.

11/8/2021 CSE 484 - Spring 2021 31

Salt

11/8/2021 CSE 484 - Spring 2021 32

username:fURxfg,4hLBX:14510:30:User Name:/u/username:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries in
the password file

• Offline dictionary attack becomes much harder

Advantages of Salting

• Without salt, attacker can pre-compute hashes of all dictionary words
once for all password entries
• Same hash function on all UNIX machines

• Identical passwords hash to identical values; one table of hash values can be
used for all password files

• With salt, attacker must compute hashes of all dictionary words once
for each password entry
• With 12-bit random salt, same password can hash to 212 different hash values

• Attacker must try all dictionary words for each salt value in the password file

• Pepper: Secret salt (not stored in password file)

11/8/2021 CSE 484 - Spring 2021 33

Shadow Password

Hashed passwords are stored in /etc/shadow file which is only
readable by system administrator (root)

11/8/2021 CSE 484 - Spring 2021 34

username:x:14510:30:User Name:/u/username:/bin/csh

/etc/passwd entry

Hashed password is no longer
stored in a world-readable file

