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Administrivia

• Lab2 is out, due Friday 11/19

• Final Project deadline 1 Friday
• Take a look at the syllabus for more information
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SQL Injection: Basic Idea
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• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end 

database changes the meaning of query

• Special case of command injection



Using SQL Injection to Log In

• User gives username ’  OR 1=1 --

• Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘ ’ OR 1=1 -- … );

• Now all records match the query, so the result is not empty  correct 
“authentication”!
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Always true! Everything after -- is ignored!



Preventing SQL Injection

• Validate all inputs
• Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form becoming part of the 
query code
• E.g.: escape(O’Connor) = O\’Connor

• Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything accidentally not 
checked / escaped?
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Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)
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http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html


Wait, why not do that for XSS?

• “Prepared statements for HTML”?
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Data-as-code

• XSS

• SQL Injection

• (Like buffer overflows)
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Cross-Site Request Forgery
(CSRF/XSRF)
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Cookie-Based Authentication Review
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ServerBrowser



Browser Sandbox Review

• Based on the same origin policy (SOP)

• Active content (scripts) can send anywhere!
• For example, can submit a POST request

• Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin
• … but you can do a lot with just sending!
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Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off
• Session cookie remains in browser state

• User then visits a malicious website containing
<form  name=BillPayForm

action=http://bank.com/BillPay.php>

<input  name=recipient value=attacker> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side effects can 
happen
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Cookies in Forged Requests
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User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E



Impact

• Hijack any ongoing session (if no protection)
• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click 

purchase

• Reprogram the user’s home router

• Login to the attacker’s account
• Why?
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XSRF True Story
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[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications 



XSRF (aka CSRF): Summary
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Q: how long do you stay logged on to Gmail?  Financial sites?



Broader View of XSRF

• Abuse of cross-site data export
• SOP does not control data export

• Malicious webpage can initiates requests from the user’s browser to an 
honest server

• Server thinks requests are part of the established session between the 
browser and the server (automatically sends cookies)
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XSRF Defenses
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• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer: 
http://www.facebook.com/home.php



Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
• Token often based on user’s session ID

• Server must verify correctness of token before executing sensitive operations

• Why does this work?
• Same-origin policy: attacker can’t read token out of legitimate forms loaded 

in user’s browser, so can’t create fake forms with correct token
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<input type=hidden value=23a3af01b>



Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required
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Referer: 
http://www.facebook.com/home.php

Referer: 
http://www.evil.com/attack.html

Referer: 

✓



?



Why Not Always Strict Checking?

• Why might the referer header be suppressed?
• Stripped by the organization’s network filter

• Stripped by the local machine

• Stripped by the browser for HTTPS → HTTP transitions

• User preference in browser

• Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF 
defenses today
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Authentication
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Basic Problem
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?

How do you prove to someone that 
you are who you claim to be?

Any system with access control must solve this problem.



Many Ways to Prove Who You Are

• What you know
• Passwords

• Answers to questions that only you know

• Where you are
• IP address, geolocation

• What you are
• Biometrics

• What you have
• Secure tokens, mobile devices
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A slightly more fundamental question

• What are we trying to prove?
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Passwords and Computer Security

• In 2012, 76% of network intrusions exploited weak or 
stolen credentials (username/password)
• Source: Verizon Data Breach Investigations Report

• In Mitnick’s “Art of Intrusion” 8 out of 9 exploits 
involve password stealing and/or cracking

• First step after any successful intrusion: install sniffer 
or keylogger to steal more passwords

• Second step: run cracking tools on password files
• Cracking needed because modern systems usually do not 

store passwords in the clear
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UNIX-Style Passwords

• How should we store passwords on a server?
• In cleartext?

• Encrypted?

• Hashed?
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t4h97t4m43
fa6326b1c2
N53uhjr438
Hgg658n53
…

user

system password file
“cypherpunk”

hash
function



Password Hashing

• Instead of user password, store H(password)

• When user enters password, compute its hash and compare with 
entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

• Which would be possible if the passwords were encrypted

• Hash function H must have some properties
• One-way: given H(password), hard to find password

• No known algorithm better than trial and error

• “Slow” to compute
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UNIX Password System

• Approach: Hash passwords

• Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and 32 punctuation 

symbols, there are 948 == 6 quadrillion possible 8-character passwords
(~252)

• BUT: Humans like to use dictionary words, human and pet names ==      
1 million common passwords 
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Dictionary Attack

• Dictionary attack is possible because many passwords come from a 
small dictionary
• Attacker can pre-compute H(word) for every word in the dictionary – this only 

needs to be done once!
• This is an offline attack

• Once password file is obtained, cracking is instantaneous

• Sophisticated password guessing tools are available
• Take into account freq. of letters, password patterns, etc.
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Salt
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username:fURxfg,4hLBX:14510:30:User Name:/u/username:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries in 
the password file 

• Offline dictionary attack becomes much harder



Advantages of Salting

• Without salt, attacker can pre-compute hashes of all dictionary words 
once for all password entries
• Same hash function on all UNIX machines

• Identical passwords hash to identical values; one table of hash values can be 
used for all password files

• With salt, attacker must compute hashes of all dictionary words once 
for each password entry
• With 12-bit random salt, same password can hash to 212 different hash values

• Attacker must try all dictionary words for each salt value in the password file

• Pepper:  Secret salt (not stored in password file)
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Shadow Password

Hashed passwords are stored in /etc/shadow file which is only 
readable by system administrator (root)
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username:x:14510:30:User Name:/u/username:/bin/csh

/etc/passwd entry

Hashed password is no longer
stored in a world-readable file


