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Administrivia

• Lab 1 due on Wednesday

• HW2 next week
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Remember our troubles with randomness?
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CSPRNGs in practice

• Gather some good entropy (256 bits?)

• Use a block cipher/HMAC/Hash to ‘stretch’ this entropy

• Regularly mix in more entropy!
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Check out NIST.SP.800-90



CSPRNG – CTR_DRBG
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Why does this work for CSPRNGs?

• To ‘break’ the CSPRNG (that is, predict the next output)
• Must know state of CSPRNG (key, inputs)

• Requires breaking the security of the primitive!

• Your CSPRNG is just as secure as the scheme you use the output for!
• Never ‘loses entropy’, same guarantee as block cipher

• Why mix in new entropy?
• Can’t hurt, prevents a single bug from breaking the future
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CSPRNGs gone bad

• DUAL_EC_DRBG – Dual Elliptic Curve Deterministic Random Bit Generator

• CSPRNG based on elliptic curve math

• NSA designed

• DUAL_EC_DRBG has a backdoor
• Special mathematical construction that allows recovery of state!

• Remember DES’s s-boxes?
• This is the opposite
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Session Key Establishment
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Modular Arithmetic

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*
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Diffie-Hellman Protocol (1976) 
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Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets

• Public info: p and g
• p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a Zp*  i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p
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Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Example Diffie Hellman Computation
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Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 

given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:

given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between      gxy mod p and gr mod p

where r is random
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More on Diffie-Hellman 
Key Exchange
• Important Note:

• We have discussed discrete logs modulo integers

• Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better security and 

performance (size) properties
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Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against passive
attackers
• Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

• Eavesdropper can’t tell the difference between the established key and a random 
value

• In practice, often hash gxy mod p, and use the hash as the key
• Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication (against 
active attackers)
• Person in the middle attack (also called “man in the middle attack”)
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Example from Earlier

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

• For p=11, g=3
• 31 mod 11 = 3, 32 mod 11 = 9, 33 mod 11 = 5, …

• Produces cyclic group {3,9,5,4,1} (order = 5) (5 is a prime)

• g=3 generates a group of prime order
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption 
• For confidentiality

• Then: digital signatures
• For authenticity
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair (public key 
PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to compute 
ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK, easy to 
compute plaintext M
• Infeasible to learn anything about M from C without SK

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the 
[1,n] interval that are relatively prime to n
• Two numbers are relatively prime if their greatest common divisor 

(gcd) is 1

• Easy to compute for primes: ϕ(p) = p-1

• Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime
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RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n

• Decryption of c:   cd mod n = (me)d mod n = m
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How to 
compute?



Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that                                              
gcd(e, ϕ(n))=1, find m such that me=c mod n
• In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c 

modulo n

• There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that 
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing factors means you can 
compute d = inverse of e mod (p-1)(q-1))
• It may be possible to break RSA without factoring n -- but if it is, we don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less than n

• Don’t use RSA directly for privacy – output is deterministic! Need to 
pre-process input somehow

• Plain RSA also does not provide integrity
• Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt             
M⊕ G(r) || r⊕ H(M⊕ G(r))

• r is random and fresh, G and H are hash functions
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RSA OAEP
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M⊕ G(r) || r⊕ H(M⊕ G(r))



Review: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n

• Decryption of c:   cd mod n = (me)d mod n = m
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How to 
compute?



Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob



RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m:  s = md mod n

• Signing & decryption are same underlying operation in RSA
• It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:   
verify that se mod n = (md)e mod n = m
• Just like encryption (for RSA primitive)
• Anyone who knows n and e (public key) can verify signatures produced with d 

(private key)

• In practice, also need padding & hashing
• Without padding and hashing: Consider multiplying two signatures together
• Standard padding/hashing schemes exist for RSA signatures
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