
CSE 484 : Computer Security and Privacy

Asymmetric Cryptography

Fall 2021

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Administrivia

• Lab 1 due on Wednesday

• HW2 next week

CSE 484 - Spring 2021

Remember our troubles with randomness?

10/24/2021 CSE 484 - Spring 2021 3

CSPRNGs in practice

• Gather some good entropy (256 bits?)

• Use a block cipher/HMAC/Hash to ‘stretch’ this entropy

• Regularly mix in more entropy!

10/24/2021 CSE 484 - Spring 2021 4

Check out NIST.SP.800-90

CSPRNG – CTR_DRBG

10/24/2021 CSE 484 - Spring 2021 5

Why does this work for CSPRNGs?

• To ‘break’ the CSPRNG (that is, predict the next output)
• Must know state of CSPRNG (key, inputs)

• Requires breaking the security of the primitive!

• Your CSPRNG is just as secure as the scheme you use the output for!
• Never ‘loses entropy’, same guarantee as block cipher

• Why mix in new entropy?
• Can’t hurt, prevents a single bug from breaking the future

10/24/2021 CSE 484 - Spring 2021 6

CSPRNGs gone bad

• DUAL_EC_DRBG – Dual Elliptic Curve Deterministic Random Bit Generator

• CSPRNG based on elliptic curve math

• NSA designed

• DUAL_EC_DRBG has a backdoor
• Special mathematical construction that allows recovery of state!

• Remember DES’s s-boxes?
• This is the opposite

10/24/2021 CSE 484 - Spring 2021 7

Session Key Establishment

CSE 484 - Spring 2021

Modular Arithmetic

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

CSE 484 - Spring 2021

Diffie-Hellman Protocol (1976)

CSE 484 - Spring 2021

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets

• Public info: p and g
• p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a Zp* i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p

CSE 484 - Spring 2021

Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Example Diffie Hellman Computation

CSE 484 - Spring 2021

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:

given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:

given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between gxy mod p and gr mod p

where r is random

CSE 484 - Spring 2021

More on Diffie-Hellman
Key Exchange
• Important Note:

• We have discussed discrete logs modulo integers

• Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better security and

performance (size) properties

CSE 484 - Spring 2021

Diffie-Hellman: Conceptually

10/24/2021 CSE 484 - Spring 2021 15

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against passive
attackers
• Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

• Eavesdropper can’t tell the difference between the established key and a random
value

• In practice, often hash gxy mod p, and use the hash as the key
• Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication (against
active attackers)
• Person in the middle attack (also called “man in the middle attack”)

10/24/2021 CSE 484 - Spring 2021 16

Example from Earlier

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

• For p=11, g=3
• 31 mod 11 = 3, 32 mod 11 = 9, 33 mod 11 = 5, …

• Produces cyclic group {3,9,5,4,1} (order = 5) (5 is a prime)

• g=3 generates a group of prime order

CSE 484 - Spring 2021

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption
• For confidentiality

• Then: digital signatures
• For authenticity

10/24/2021 CSE 484 - Spring 2021 18

Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair (public key
PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to compute
ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK, easy to
compute plaintext M
• Infeasible to learn anything about M from C without SK

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

10/24/2021 CSE 484 - Spring 2021 19

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the
[1,n] interval that are relatively prime to n
• Two numbers are relatively prime if their greatest common divisor

(gcd) is 1

• Easy to compute for primes: ϕ(p) = p-1

• Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime

10/24/2021 CSE 484 - Spring 2021 20

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n

• Decryption of c: cd mod n = (me)d mod n = m

10/24/2021 CSE 484 - Spring 2021 21

How to
compute?

Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that
gcd(e, ϕ(n))=1, find m such that me=c mod n
• In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c

modulo n

• There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing factors means you can
compute d = inverse of e mod (p-1)(q-1))
• It may be possible to break RSA without factoring n -- but if it is, we don’t know how

10/24/2021 CSE 484 - Spring 2021 22

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less than n

• Don’t use RSA directly for privacy – output is deterministic! Need to
pre-process input somehow

• Plain RSA also does not provide integrity
• Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt
M⊕ G(r) || r⊕ H(M⊕ G(r))

• r is random and fresh, G and H are hash functions

10/24/2021 CSE 484 - Spring 2021 23

RSA OAEP

CSE 484 - Spring 2021

M⊕ G(r) || r⊕ H(M⊕ G(r))

Review: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n

• Decryption of c: cd mod n = (me)d mod n = m

10/24/2021 CSE 484 - Spring 2021 25

How to
compute?

Digital Signatures: Basic Idea

10/24/2021 CSE 484 - Spring 2021 26

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

• Signing & decryption are same underlying operation in RSA
• It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
• Just like encryption (for RSA primitive)
• Anyone who knows n and e (public key) can verify signatures produced with d

(private key)

• In practice, also need padding & hashing
• Without padding and hashing: Consider multiplying two signatures together
• Standard padding/hashing schemes exist for RSA signatures

10/24/2021 CSE 484 - Spring 2021 27

