
Section 7
Research Topics in Web Security

Including content by Eric Zeng & Keanu Vestil



Administrivia
Upcoming due dates:

● November 19th, 11:59pm: Lab 2 Due

● November  26th, 11:59pm: Final Project Checkpoint #2

● Homework 3: 12/1/2021

● Lab 3 to be released somewhat soon



Lab 2 Hints: PHP script setup

Cookie collecting script not working? 
Make sure to set file permissions on your PHP file so that Apache Server can access it

$ chmod 644 cookieEater.php
$ chmod 622 output.txt

Where does the cookie collecting script go?
In your homes directory (your personal CSE website)

/cse/web/homes/<your_netid>/cookieEater.php



Lab 2 Hints: How to run JavaScript on the page

You don’t need to know all of them for Lab 2, but you will need to use different approaches for 
different filters!



Lab 2 Hints: XSS

There are usually multiple ways to do the XSS exploits!

● Example: In Problem 1, window.open may fail because of 

popup blocking. 

● What other JavaScript APIs or HTML elements can cause a 

web request?



Lab 2 Hints: XSS
Mixing HTML, JavaScript, and URLs… which syntax are you using?

<script>
     alert(‘hi’);
</script>

HTML
JavaScript

<body  onload=”alert(‘hi’);”></body>

For event handler attributes, the value 
is interpreted as JavaScript code and 
inserted into a function:
> console.log(myImg.onload.toString());
“function onclick(e) { alert(‘hi’); }”

<iframe src=”example.com/?id=<script>alert(‘hi’);</script>” />

This is a URL
Which means it must be 
URL encoded

This is HTML + JS….
Not on the page containing this iframe…
But on the page inside iframe (assuming it 
has a  sanitization vulnerability)

Will this iframe load?
Which language’s escape 
characters do we use?



HTML Escape characters

Inside HTML attributes (e.g. src), 
you can use escape sequences 
instead of the character itself

The &#47; is interpreted as 
a slash / in the image src

https://mateam.net/html-escape-characters/


Lab 2 Hints: SQL

SQL is a language used to manage and query 

databases

Each database contains tables of data. The 

SELECT keyword is used to query tables and 

retrieve data.

In insecure web applications, user-provided 

strings may be concatenated directly with 

the query

CREATE TABLE students (
id int, 
name varchar(255)

);

INSERT INTO students 
VALUES (1, 'Chamberlin Boyce'); 

SELECT * FROM students 
WHERE id = 1; 

uw.edu/deleteUser/1

uw.edu/deleteUser/1 OR 1; --

DELETE FROM students 
WHERE id = 1 OR 1; --;

DELETE FROM students 
WHERE id = 1;



SQL injection tips: Gathering information
Some standard SQL injection questions:

● What database software is in use? (Postgres, SQLite, MySQL, etc.)

● What types of queries are being run? (SELECT, INSERT, DELETE, UPDATE, etc.)

● How many columns are being selected/inserted into?

SELECT col1, col2, col3 FROM table WHERE col4='%user_data%';

SELECT col1, col2, col3 FROM table WHERE col4='' OR 1=1 UNION SELECT NULL;--';
SELECT col1, col2, col3 FROM table WHERE col4='' OR 1=1 UNION SELECT NULL, NULL;--';
SELECT col1, col2, col3 FROM table WHERE col4='' OR 1=1 UNION SELECT NULL, NULL, NULL;--';



SQL injection tips: Gathering information
Some standard SQL injection questions:

● What database software is in use? (Postgres, SQLite, MySQL, etc.)

● What types of queries are being run? (SELECT, INSERT, DELETE, UPDATE, etc.)

● How many columns are being selected/inserted into?

SELECT col1, col2, col3 FROM table WHERE col4='%user_data%';

SELECT col1, col2, col3 FROM table WHERE col4='' OR 1=1 UNION SELECT NULL;--';
SELECT col1, col2, col3 FROM table WHERE col4='' OR 1=1 UNION SELECT NULL, NULL;--';
SELECT col1, col2, col3 FROM table WHERE col4='' OR 1=1 UNION SELECT NULL, NULL, NULL;--';

Vulnerable!

Error: wrong number of columns

No error: vulnerable query selects 3 columns



Clickjacking



Defend against CSRF with dynamic tokens

CSRF tokens must be
● Unique to each user
● Unpredictable
● Secret



Clickjacking (UI Redressing)
● Attacker overlays multiple 

transparent or opaque frames to 

trick a user into clicking on a 

button or link on another page

● Clicks meant for the visible page 

are hijacked and routed to 

another, invisible page

● Can defeat CSRF tokens



How does it work? 
● Any site can embed any other site using an iframe

<iframe

   src=“http://www.google.com/...”>

</iframe>

● Use CSS to make the iframe of the target site 

invisible
○ opacity defines visibility percentage of the iframe

○ 1.0: completely visible

○ 0.0: completely invisible

● Use CSS to put the iframe’s button over the 

parent page’s button

Submit

www.attackersite.com

Click here to see to 
see cute dogs!

iframe: venmo.com/markov/send

Send $40



Other Variants
● Fake cursors (mouse pointers)

● Stealing text box focus - 

redirecting typing somewhere 

else

● Double clickjack: ask user to 

double click, pop a window up 

right below the mouse in 

between clicks



Defenses

● Websites can prevent themselves from being used in an iframe, using 

Content Security Policy (CSP) to specify which domains can embed 

them:

Content-Security-Policy: frame-ancestors ‘self’;



Designing HTTPS Warnings



How does HTTPS/TLS encrypt web traffic?

> Navigate to google.com

“I’m Google! Here’s my public key! 
Let’s negotiate a symmetric key!”

“How do I know you’re Google?”

“Here’s my certificate 
(signed public key) - it was 
signed by Comodo CA”

“I trust Comodo CA! Let’s 
check if that’s true.” 
*validates certificate chain*

Comodo 

(root cert)



What happens if the connection is tampered 
with?

> Navigate to google.com

“I’m Google! Here’s my public key! 
Let’s negotiate a symmetric key!”

“How do I know you’re Google?”

“Here’s my certificate 
(signed public key) - it was 
signed by Comodo CA”

“I trust Comodo CA! Let’s check if 
that’s true.” 
*certificate chain validation fails*

Comodo 

(root cert)

???????

What happens now?



What happens if the connection is tampered 
with?
● Browser can’t go to the page anymore

○ Could contain malicious JavaScript

○ Could be a perfect copy of the site,  trick users into giving up their passwords, CCNs

● But what if it was just a false positive/misconfiguration?
○ Website owner could have served the wrong certificate

○ Website owner could have forgotten to renew their certificate, and it expired

○ User’s computer’s clock could be off, making the browser think the certificate expired



Initial solution: warn the user, let them decide



So what did users actually do?

Alice in Warningland: A Large-Scale Field Study of Browser Security Warning. 
Devdatta Akhawe,  Adrienne Porter Felt. USENIX Security 2013



Opinionated Design: Make the bad thing hard 

Need to click here 
first to get the 
ignore button



Did it work?

yup

Improving SSL Warnings: 
Comprehension and Adherence
Adrienne Porter Felt , Alex Ainslie , 
Robert W. Reeder , Sunny Consolvo , 
Somas Thyagaraja, Alan Bettes, Helen 
Harris, Jeff Grimes
CHI 2015



Lessons

● Opinionated Design

○ Don’t force users to make security decisions!

○ But if you have to, make it hard for them to make mistakes

● Reducing HTTPS Warnings

○ If you show too many false positives, people get desensitized and have a 

harder time identifying real problems - warning fatigue
○ How do we reduce false positives? One approach: notify website owners 

that they have a misconfiguration
Fixing HTTPS Misconfigurations at Scale: An Experiment with Security Notifications.
Eric Zeng, Frank Li, Emily Stark, Adrienne Porter Felt, Parisa Tabriz. WEIS 2019



Site Isolation



Why do we want this?

● “Multi-process” browser model is not enough sandboxing

○ Browser loads trusted and untrusted sites in the same renderer process

● Rendering engine bugs are common

○ Can be exploited to access cross-site data

● Universal XSS can bypass Same Origin Policy within the renderer process

● Side channel attacks like Spectre can be exploited without a bug in Chrome

○ Read arbitrary memory in renderer process

Site Isolation: Process Separation for Web Sites within the Browser.
Charles Reis, Alexander Moshchuk, Nasko Oskov, Google. (USENIX Security 2019)



Where did we come from?

● Transitioning from (b) Multi-process to (c) Site Isolation

● (d) Origin Isolation would be desirable, but the overhead is prohibitive

● See: Barth, et al. “The Security Architecture of the Chromium Browser” (2008)

Site Isolation: Process Separation for Web Sites within the Browser.
Charles Reis, Alexander Moshchuk, Nasko Oskov, Google. (USENIX Security 2019)



Site Isolation Design

● Site-dedicated processes

○ Out of process iframes

● Cross-Origin Read Blocking (CORB)

○ Custom confirmation sniffing of response

● Enforcements against malicious agents

○ Browser process tracks illegal requests

Site Isolation: Process Separation for Web Sites within the Browser.
Charles Reis, Alexander Moshchuk, Nasko Oskov, Google. (USENIX Security 2019)



Implementation

● Significant 5-year effort

○ Changed or added 450k lines of code in 9000 files

● Optimizations

○ Consolidate processes that refer to the same site

○ Keep a “warmed-up spare” process handy for swaps

● Deployment

○ Test changes with extensions and selective site isolation first

○ Preliminary isolation modes used to gather bug reports and performance data

○ Each milestone utilized Chrome’s A/B testing mechanism

Site Isolation: Process Separation for Web Sites within the Browser.
Charles Reis, Alexander Moshchuk, Nasko Oskov, Google. (USENIX Security 2019)



Security Evaluation

● New protections:

○ Authentication

○ Cross-origin messaging

○ Anti-clickjacking

○ Data confidentiality (via CORB)

● Remaining potential renderer vulnerabilities:

○ Bypassing site isolation

○ Targeting non-isolated data

○ Cross-process attacks

Site Isolation: Process Separation for Web Sites within the Browser.
Charles Reis, Alexander Moshchuk, Nasko Oskov, Google. (USENIX Security 2019)

Example rendering exploit



Performance Evaluation

● Field measurements are more realistic than microbenchmarks

○ e.g. many tabs, “long tail” sites

● Process sharing heuristics decrease potential resource usage

○ Average memory usage per process decreased by 50%, but overall 9-13% increase in memory 
overhead

○ Distributing the same workload across more processes

● Compatibility preservation

○ CORB blocks <1% of responses (20% blocked by traditional content type filtering)

○ Less intrusive than reducing timer precision or modifying JavaScript compiler

Site Isolation: Process Separation for Web Sites within the Browser.
Charles Reis, Alexander Moshchuk, Nasko Oskov, Google. (USENIX Security 2019)



Chrome <3 RAM


