
Section 3: Advanced
Buffer Overflow

CSE484
Including content from previous quarters by: Eric Zeng, Keanu Vestil, James Wang, Amanda Lam, Ivan
Evtimov, Jared Moore, Franzi Roesner, Viktor Farkas

Administrivia
● Lab 1a due next Wednesday, Oct 15th @ 11:59pm (TOMORROW!)

○ Run the md5sum command on sploits 1-3, save the strings in

<netid>_<netid>_<netid>.txt and submit on Canvas

○ You are not allowed to modify the content of exploits after this (feel free

to save copies of your sploits 1-3 just in case)

● Final deadline for Lab 1 is Oct 27th @ 11:59pm

Hashing your solutions
$ md5sum sploit1.c >> netid_netid_netid.txt
$ md5sum sploit2.c >> netid_netid_netid.txt
$ md5sum sploit3.c >> netid_netid_netid.txt
$ cat netid_netid_netid.txt
da3a0665c22a21768d270cb9607baf3b sploit1.c
1000d564ca358ead346459c61c141bf8 sploit2.c
48c102bfb9041062179c78fa58e2f045 sploit3.c

Lab 1 Notes/Hints
● If you get stuck, move on!

● Don’t procrastinate on Sploits 4-7. (Some of them are harder)

● Sploit 3: No frame pointer (EBP), so you can only change last byte of saved

return address (EIP).

● Hint - In a stack frame, your shellcode can appear in two places:

1) A pointer to the shellcode in the arguments section of the stack frame

2) In the buffer that the target program copies the shellcode to

A Note About Null
Your payload is treated as a string.

● Null byte (\x00) can terminate it early

● Changing buffer size will shift addresses

● Double check memory

ret

ret

sploit argv[1] target buf

Good payload:

Bad payload:

strcpy: I’m going to keep copying bytes until I see NULL
you:
\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89
\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8
\xdc\xff\xff\xff/bin/sh\x90\x90\x90\x90\x90...

strcpy:

Why do we care about buffer overflows?
● Notable malware that used buffer overflow exploits

○ SQL Slammer worm (2003)

■ Buffer overflow vulnerability in MS SQL Server, attacked open UDP ports

■ Infected 75000 computers in 10 minutes, took down numerous routers

○ WannaCry and NotPetya ransomware (2017)

■ Uses exploit in MS Windows sharing protocol, called EternalBlue, developed by NSA

■ Used to enable malware that encrypts a computer’s files and ransom them for BTC

■ Affected many people, large companies, caused $billions in damages

● Most security bugs in large C/C++ codebases are due to memory corruption vulns
○ Google: “Our data shows that issues like use-after-free, double-free, and heap buffer overflows

generally constitute more than 65% of High & Critical security bugs in Chrome and Android.”

○ Microsoft: “~70% of the vulnerabilities Microsoft assigns a CVE each year continue to be memory

safety issues”
○ Read more: https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

memory unsafe
languages (C, C++)

Rust, Go
Further reading:
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-
of-engineering

https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering

Useful resources/tools:

- Aleph One “Smashing the Stack for Fun and Profit”
(also see: “revived version”)
- scut “Exploiting Format String Vulnerabilities”
- Chien & Ször “Blended attack exploits…”
- Office Hours
- Ed Discussion Board

https://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/stack.txt
https://avicoder.me/2016/02/01/smashsatck-revived/
https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://courses.cs.washington.edu/courses/cse484/14au/assignments/blended.attacks.pdf

Sploit 5??
➔ What makes it different?

Buffer copied to the heap (instead of stack)

➔ What makes it vulnerable?
The behavior of freeing an already freed
memory chunk is undefined [Commonly
known as double-free]

➔ Useful Resources

Read "Once upon a free()"

 [http://phrack.org/issues/57/9.html]

http://phrack.org/issues/57/9.html
http://phrack.org/issues/57/9.html

● Memory allocation: malloc(size_t n)
○ Allocates n bytes (doesn’t clear memory)

○ Returns a pointer to the allocated memory

● Memory deallocation: free(void* p)
○ Frees the memory space pointed to by p

○ p must have been returned by a previous call to malloc() (or similar).

○ If p is null, no operation is performed.

○ If free(p) has been called before (“double free”), undefined behavior

occurs.

Dynamic Memory Management in C

tmalloc implementation

● We provide an implementation of malloc in tmalloc.c and use

that in target5.

● Note that tmalloc.c does not use the actual heap!

● Line 57: static CHUNK arena[ARENA_CHUNKS];
● We allocate our own space in the global variables region that we

manage with tmalloc, tfree, trealloc, etc. as if though it’s a

heap.

● Common in embedded devices with an OS that doesn’t have a

heap.
Refer to
https://gitlab.cs.washington.e
du/snippets/43 for a
tmalloc implementation.

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/43

tmalloc and Chunks

● Chunks of heap memory are
organized into a doubly-linked
list

● Each chunk contains pointers to
the next and previous chunk in
the list.

● The least significant byte of the
next pointer contains the “free
bit”

Note: the free bit is
stored in the same 4
byte word as the next
pointer.

This is possible
because tmalloc
chunks are aligned on
8 byte word
boundaries, so we
know that the last bit
is never used to refer
to an address.

In binary:
0x0: 00000
0x8: 01000

Chunk header definition

Chunk Maintenance

Refer to
https://gitlab.cs.washington.edu
/snippets/43 for a tmalloc
implementation.

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/43

tmalloc.h usage example
Before tmalloc call (line 16):

After tmalloc call: chunk pointers created

big, happy free space

arena
0x8049c00

arena
0x8049c00

NULL

p
0x8049c08

16 bytes available for writing0x8049c18 0x8049c00 0x8059bf90 1

p’s next
0x8049c18

Refer to
https://gitlab.cs.washington.edu
/snippets/43 for a tmalloc
implementation.

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/43

tmalloc.h usage example
After the user writes in line 22 (note little-endianness in printout):

When tfree is called, this chunk is coalesced with the next one :

arena
0x8049c00

NULL

p
0x8049c08

0xf1 0xf2 0xf3 … 0xf9 0x000x8059bf9 0x8049c00 next0x8059bf9 11

arena
0x8049c00

NULL

p
0x8049c08

0xf1 0xf2 0xf3 … 0xf9 0x000x8049c18 0x8049c00 0x8059bf90 1

p’s next
0x8049c18

“dead” space

Refer to
https://gitlab.cs.washington.edu
/snippets/43 for a tmalloc
implementation.

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/43

Target 5

● BUFLEN = 168

● Copies your buffer into heap

memory allocated by tmalloc()

● What’s the vulnerability?

q is freed twice, but only
allocated once

Double tfree example
After tmalloc call for q (line 56):

After tfree call for p (line 62):
arena

L = 0

p

16 allocated bytesR = q-8 L = p-8
Next

Chunk
0 0

p’s right

16 bytes

q

arena

L = 0

p

R = q-8
L = bot
= p-8

Next
Chunk

1 0 16 bytes

q

Refer to https://gitlab.cs.washington.edu/snippets/43 for a tmalloc implementation and to https://gitlab.cs.washington.edu/snippets/44 for the code used to generate these
examples.

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/44

Double tfree example
After tfree call for p (line 62):

After tfree call for q (line 63):
arena

L = 0

p

R = q-8
L = bot
= p-8

Next
Chunk

1 0 16 bytes

q

Refer to https://gitlab.cs.washington.edu/snippets/43 for a tmalloc implementation and to https://gitlab.cs.washington.edu/snippets/44 for the code used to generate these
examples.

arena

L = 0

p

Next
Chunk

L = bot
= p-8

Next
Chunk

1 0 16 bytes

q

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/44

0x8049dc8

arena

NULL

p

0

Double tfree example
Our input buffer contains: \x01\x02\x03\x04\x05…\x11\x12\x13
After copying the buffer to the new p:

Refer to https://gitlab.cs.washington.edu/snippets/43 for a tmalloc implementation and to https://gitlab.cs.washington.edu/snippets/44 for the code used to generate these
examples.

What are the contents of L,
the word that used to be a
pointer to q’s left?

q

L R“\x01\x02\x03\x04\x05…”

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/44

0x8049dc8

arena

NULL

p

0

Double tfree example
Our input buffer contains: \x01\x02\x03\x04\x05…\x11\x12\x13
After copying the buffer to the new p:

Refer to https://gitlab.cs.washington.edu/snippets/43 for a tmalloc implementation and to https://gitlab.cs.washington.edu/snippets/44 for the code used to generate these
examples.

L = 0x00131211What are the contents of L,
the word that used to be a
pointer to q’s left?

q

L R“\x01\x02\x03\x04\x05…”

Exploit hint 1: We can control the value stored at q->s.l!

https://gitlab.cs.washington.edu/snippets/43
https://gitlab.cs.washington.edu/snippets/44

Double tfree example

At line 108, tfree assigns the variable q to p’s left chunk (p->s.l).
Then, it checks if the chunk at q is free, and merges the chunks if it is
free

q (p->s.l)

L R 1

current

What would happen in tfree(q)?

Note: tfree()flips the naming in the variables
(ie. tfree(q) renames the variable q from
foo() to p, and p from foo() is referred to as
q (when we set q = p->s.l).

Since this is confusing, we’ll use current to
refer to the q in foo() , and p and q to refer to the
code in tfree()

p

To trigger the chunk merge, we need to be sure q’s free bit is set to
(1).

Refer to https://gitlab.cs.washington.edu/snippets/43
for a tmalloc implementation.

L R 1

(right chunk)

https://gitlab.cs.washington.edu/snippets/43

Double tfree example
Line 112: tfree sets q.r to the address of p’s right chunk
Line 113: tfree copies the address of q to p’s right chunk’s
left/prev pointer (p->s.r->s.l)

What if p.r and p.l didn’t point to real chunks?

Exploit hint 2: Can overwrite a location (p.r.l) with a value we
specified (q, which tfree sets by reading p.l).

What if p.r = &RET, and q = &buf?

q (p->s.l)

L R 1

current

p

L R 1 L R 1

p->s.r

What would happen in tfree(q)?

Note: tfree()flips the naming in the variables
(ie. tfree(q) renames the variable q from
foo() to p, and p from foo() is referred to as
q (when we set q = p->s.l).

Since this is confusing, we’ll use current to
refer to the q in foo() , and p and q to refer to the
code in tfree()
Refer to https://gitlab.cs.washington.edu/snippets/43
for a tmalloc implementation.

https://gitlab.cs.washington.edu/snippets/43

Final Words
- Good luck with the second half of lab 1, please
start early!!

- Post questions on discussion board

