
Section 2: Buffer
Overflow

A guide on how to approach buffer overflows &
lab 1
Slides by James Wang, Amanda Lam, Ivan Evtimov, and Eric Zeng

Administrivia
● Office Hours

○ David: Mondays, 11:30am - 12:00pm - CSE2 310

○ TAs: Tues 10:30 -11:30am, Wed 5-6pm, Thurs 5 - 6pm, Fri 2:30 - 3:30 pm

● Lab 1

○ Make sure all of your group members are registered in Canvas

○ Form your groups and fill out the Google Form so that we can create a

group account for access to the Lab 1 machine

○ Groups of 3, can be different than HW1

1. Lab 1 Overview
➔ 7 targets and their sources

located in /bin/
Do not change or recompile targets!

➔ 7 stub sploit files located in
~/sploits/
Make sure your final sploits are built
here!

Goal: Cause targets (which run as
root) to execute shellcode to gain
access to the root shell. [The Aleph
One Shellcode is provided to you]

Useful resources/tools:

- Aleph One "Smashing the Stack for Fun and
Profit"
- Chien & Szor "Blended attack exploits..."
- Office Hours (available every day)

https://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/stack.txt
https://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/stack.txt
https://courses.cs.washington.edu/courses/cse484/14au/assignments/blended.attacks.pdf

Lower addresses: 0x00000000

Higher addresses: 0xffffffff

A Review of Process Memory
The process views
memory as a
contiguous array of
bytes indexed by
addresses of length
32 bits (4 bytes).

The process also has
access to registers
on the CPU. Some
are used to manage
a lot of what you will
see, so we will come
back to them later.

Heap & text

Lower addresses: 0x00000000

Stack

Higher addresses: 0xffffffff

A Review of Process Memory

At the “top” is the code we
are running (the text) and
the heap, where global
variables are stored.

At the “bottom” is the stack
where the arguments and
local variables of a function
are stored. (More on this
next.)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET

Higher addresses: 0xffffffff

Calling a Function

First: Arguments to the function
are pushed on the stack.

Then: the pointer to the
instruction after the call (RET) is
pushed on the stack.

Then: the call instruction is
executed.

Stack grows this way (towards
lower addresses), as more
variables are declared and
functions are called

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

First Steps Inside a Function

(Typically) first instruction of
function:
Push the frame pointer (SFP)
on the stack.

Then (possibly not immediately):
the stack is expanded to make
space for the local variables of
the function (Locals).

Stack grows this way (towards
lower addresses), as more
variables are declared and
functions are called

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

3 Important Registers

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

For convenience, we hold the
boundary of the region
dedicated to the current
function (“the stack frame”) in
%ebp.

The “top” of the stack - where
we push and pop - is defined
by the value in %esp.

The address of the instruction
we are executing is held in
%eip.

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

If you disassemble a function,
you see 2 instructions at the end
of a function:

leave
ret

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

leave can be thought of as
executing these
2 instructions:

mov %ebp, %esp
pop %ebp
ret

Note that pop reads the top of
the stack (what %esp is pointing
to) and puts it into the specified
register.

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

ret can be thought of as
executing this instruction:

mov %ebp, %esp
pop %ebp
pop %eip

*Note that ret is a bit more
complex in practice, but we
won’t worry about that for now.

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

mov %ebp, %esp
pop %ebp
pop %eip

(before)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack frame bottom,
%EBP and %ESP (for
now)

Instruction pointer: %EIP

mov %ebp, %esp
pop %ebp
pop %eip

(after)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack frame bottom,
%EBP and %ESP (for
now)

Instruction pointer: %EIP

mov %ebp, %esp
pop %ebp
pop %eip

(before)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack top: %ESP

Instruction pointer: %EIP

mov %ebp, %esp
pop %ebp
pop %eip

stack frame bottom,
%EBP

(after)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack top: %ESP

Instruction pointer: %EIP

mov %ebp, %esp
pop %ebp
pop %eip

stack frame bottom,
%EBP

(before)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack top: %ESP

Instruction pointer: %EIP

stack frame bottom,
%EBP

In reality, ret and/or the
rest of the instructions of
the caller might do more
here to deallocate args,
but we won’t worry about
that.

2. Using gdb
Similar to what we did in 351, gdb will be your
best friend over the next few weeks~~~

➔ Command (e.g. sploit0)
cgdb -e sploit0 -s /bin/target0 -d
~/targets

➔ Setting breakpoints
- catch exec (Break when exec into new
process)

- run (starts the program)

- break main (Setting breakpoint @ main)

- continue

Useful gdb commands

● step [s]: execute next source code line

● next [n]: step over function

● stepi [si]: execute next assembly instruction

● list : display source code

● disassemble [disas]: disassemble specified

function

Useful gdb commands (cont.)

● x : inspect memory (follow by / and format)

○ 20 words in hex at address: x/20xw 0xbffffcd4
○ Same as x/20x

● info register : inspect current register values

● info frame : info about current stack frame

● p : inspect variable

○ e.g., p &buf (the pointer) or p buf (the value)

● Hardcoding addresses -> Run through gdb first

● Don't be alarmed by Segfault (you might be on the right

track)

● Using memset & memcpy to construct big buffers

● GDB cheatsheet

● The exploits are in increasing difficulty* -> Plan ahead

● Backup your exploit files periodically

● Be a good teammate

Additional tips

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

target0.c

Do you spot a security vulnerability?
No bounds check on input to strcpy()

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

buf

Normal execution of
target0

This is the stack frame for
foo() after executing
strcpy() , if we pass an
input of <104 bytes

Copied input data (orange)
fits inside of buf

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

Localsbuf

RET
SFP

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

What if we had
passed an input of
size 112 bytes?

RET and SFP overwritten
by strcpy()

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

Locals“\xeb\x1f\x5e\x89\x76…”

RET
SFP

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Writing the shellcode
to buf

If our input buffer starts with
the shellcode, it will be
copied into buf by
strcpy() .

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

Locals“\xeb\x1f\x5e\x89\x76…”

RET: address of shellcode
SFP

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

beginning of shellcode

Overwrite RET

The last 4 bytes of our
input will overwrite RET -
so in the input buffer, we
put the address of the
shellcode in the last 4
bytes.

sploit0.c

How do we implement this attack?

args[1] will be passed to target0.c, as
argv[1].

We’ll replace “hi there” with the attack
buffer/string.

Demo
Step 1: Figure out how big the buffer should be
Step 2: Place shellcode somewhere in the buffer
Step 3: Overwrite return address to point to the
shellcode

Step 1

Let's take a look the buffer and the
register information

cgdb -e sploit0 -s /bin/target0 -d ~/targets
catch exec
run
break main
continue
s (step, repeat until after strcpy() is executed)

Step 1 (cont.)

Suppose instead of "hi there", we have
"hi there hi there".

Start of buf now says “hi there hi there”

%ebp is a different address, because
input buffer is longer, changing the size
of the stack

Important note: Establish your buffer
size before overwriting RET with the
hardcoded address - the address will
change if you change the size!

Step 1 (cont.)

We want to overwrite the return
address (RET)

RET is the 4 bytes after SFP

SFP is 4 bytes after local variable

buf is a char array of size 104 bytes, so
the buffer need to be at least 112 bytes,
to overwrite RET

Step 2

What should we put inside the buffer?

Initialize everything with NOP
instruction (0x90)

- “NOP sled”

Step 2

You can pretty much put the shellcode
anywhere inside the buffer, as long as it
doesn't interfere with the EIP (It’s
easier to just put it in front)

Be aware that strcpy copies until it
sees the null-terminating byte.

Step 2

Let's double check the content of buf
using gdb!

Step 3

Run code through gdb, figure out where
your shellcode is located

Modify buf + 108(the location of RET)
to point to the address that your
shellcode starts

Exploit 0 (Solved)

Make sure you run gdb and figure out
what the actual address should be

Deadlines

Week 2 - 5

October 6
Assignment posted!

October 15
Checkpoint due [exploits 1-3]

October 27
Final Deadline [exploits 4 - 7]

Final Words
- Good luck with lab 1, please start
early!!

- Post questions on discussion
board

- Come to office hours with
questions

