Section 5
Public Key Crypto Topics:
RSA, Cryptanalysis with CBC-MAC

Administrivia

e Homework 2 due next Friday (11/5)
o Individual assignment
o Hands-on cryptography
e Final Project checkpoint #1 due next next Friday (11/12)
o Group members’ names and UWNet|Ds
o Presentation topic

RSA:
Key generation,

‘ ' ' ' ‘ encryption, and

decryption

Public Key Cryptography Review

Alice wants to send Bob an encrypted message
e Goal: Confidentiality
e Problem: Eve can intercept key

Public Key Cryptography Review

Solution: public key cryptography (aka asymmetric cryptography)
e Public-private keypair
e Alice encrypts using Bob’s public key
e Bobdecrypts using Bob’s private key

“a \

WAl
J VA—»

RSA Cryptosystem Review

Key generation:
e Generatelarge primesp, q
e Compute N=pqgand ¢(N)=(p-1)(g-1)
e Choose e coprime to ¢(N)
o Typicallye=3 or e=2'+1=65537
Find (unique) d such that ed = 1 (mod ¢(N))
o (equivalent tosolving 1 = (e~d) mod ¢(n))

Adi Shamir, Ron Rivest, Len Adleman
[Photo from Dan Wright]

Public key = (e, N); Private key = (d, N)

Encryption of m: c=m®mod N
Decryption of c: ¢ mod N = (m® mod N)4 mod N =m*mod N =m

RSA Practice

Publickey:N=33, e=7 Cryptograms:
12 14 27 20 1 6 16 27
Step 1: Find ¢(N) 612521 14 12
Step 2: Find the decryption key, d 7 159 2 14 12 1 20 28 14 12 27
- ed =1 (mod ¢(N)) 16 27 20 1 26 14 12 12 27

Step 3: Decrypt the cryptogram
- cmodN=m
- AN=1,B=2,..

e ——

ey
i» e oo DO
TS SRR,

Cowabunga!

\YENAGE MUTANT N/NJA

Tea177)

RSA Strength

“RSA problem”: decrypt only using the public key

Factoring N is hard
No known efficient algorithm
Trapdoor function: easy to go forward, hard to go back

RSA Factoring Challenge (1991-2007)

Cash prizes for factoring large N values (up to $200,000 (!))
Only the smallest 23 of 54 factored so far...

Shor’s Algorithm

Quantum computer algorithm to factor integers
Largest number factored so far: 21 ==

RSA-2048:
25195908475657893494027183240
04839857142928212620403202777
71378360436620207075955562640
18525880784406918290641249515
08218929855914917618450280848
91200728449926873928072877767
35971418347270261896375014971
82469116507761337985909570009
73304597488084284017974291006
42458691817195118746121515172
65463228221686998754918242243
36372590851418654620435767984
23387184774447920739934236584
82382428119816381501067481045
16603773060562016196762561338
44143603833904414952634432190
11465754445417842402092461651
57233507787077498171257724679
62926386356373289912154831438
16789988504044536402352738195
13786365643912120103971228221
20720357

RSA Today

e Still used today but mostly in legacy applications
o SSH keys, TLS, etc.
o But not preferred...
e Need big keys for RSA
o Atleast 2048 bits
e Bigger keys = slower computation
e Modern encryption schemes exist, such as Elliptic-Curve
Cryptography (ECC)
Explanation and Diagram for ECC

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

Demonstration:
Finding vulnerabilities
in CBC-MAC with

cryptanalysis

Is encryption (confidentiality) enough?

Scenario: David wants to send out an email about exam times - and a hacker
has learned the encryption key

ok
=
“Final!!! N’
KNE 110 (B
Monday _

2:30PM” .
In this case, an adversary

AES 128-bit key, . doei” ttg;"nl anyﬁhlntgh
CBC mode Important by learning the
content of this message.

dkohlbre@cs

Is encryption (confidentiality) enough?
But, the attacker could tamper with the message during transmission,
and the recipient would not know - so we need to ensure integrity

=, 77?

!-& “Final!!!
> KNE 110

. Saturday
Tampers with 12:30AM”

message in
transit

484 Student

MAC (Message Authentication Code)

Provides integrity and authentication: only someone who knows the
KEY can compute correct MAC for a given message.

MAC: message authentication code
(sometimes called a “tag”)

.°°
.oo

message, MAC(KEY,message)

Alice message g

L~
L] 0

J

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

When do we MAC?

- The good: The bad (& ugly):
I Encrypt-then-MAC Encrypt-and-MAC
Encrypt MAC is deterministic! Same
| MAC-then-encrypt plaintext — same MAC
C | MAC Not as good as .
l Encrypt-then-MAC I
0 T
T Encryptke MACkm
|

Encrypt-then-MAC C, T

How do we create a MAC?

CBC-MAC: Encrypt the message in CBC mode, use the last block as the MAC

ml m?2 mx
r \
Initialization 0 _.,éa {5 > {5
vectorisO
y \
k = secret key k—> E k—> E k—>{ E

result

*CBC-MAC is not the only MAC algorithm - today most use HMAC; we'll show why next

Last block of
ciphertext
used as MAC

Is CBC-MAC vulnerable?

e How could we find out?
e Cryptanalysis: using mathematical analysis to rigorously reason about a
cryptographic system

e Let'suse cryptanalysis to find a collision
e twodifferent inputs leading to the same MAC tag
e (violating collision resistance)

Exercise: CBC-MAC collision vulnerability

Suppose a and b are both one block long, and suppose the _ “

sender MACs a, b, and a || b with CBC-MAC.

An attacker who intercepts the MAC tags for these
messages can now forge the MAC for the message

b1l (M (b)eM.(a)®b)

which the sender never sent. The forged tag for this
message is equal to M, (a || b), the tag for a || b. Justify

mathematically why this is true. a|| b:aand b concatenated

MK(a): MAC for message a

EK(a): ciphertext for message a

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove: ErEE I

M.(b]| (M,(b)®M,(a) @ b)) = M,(a]| b)
D

Step 1: Figure out what M, (a), M, (b), and M, (a || b) 27 777
in terms of the encryption key. : :

Annotate sketch with the sender’s messages and
MACs.

77

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove:
M. (bl (M. (b)eM,(a)eb))=M,fall b)

M. (a)=E,(a)
MK(b) = EK(b) (not shown)
M,(a | b) = E,(E, (a)ob)

E,(E,(a)eb)

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove B LTS
M. (bl (M,(b)®M,(a)e b)) =M.(al| b)

Step 2: Figure out M, (b || (M, (b)® M, (a)®b)).

For the MAC of the attacker’s message
b|| (M, (b)eM,(a) @ b), what are the values of the ???'s?

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Exercise: CBC-MAC collision vulnerability

Prove T
M. (bl (M,(b)eM,(a)eb))=M(al| b)

M, (b [(M, (b)eM,(a) @ b))
=M (b || (E (b)®E,(a) @ b))

= E'{EK(b) ® EK(b) ® EK(a) ® b) These terms
cancel out

- . Thisisthe same as

=E(Ea)eD) M,fal| b)!

E (E,(a) @ b)

So what?

We can prove, just using the specification of CBC-MAC, that the
messages b || (M(b)® M(a) ® b) and a || b share the same tag. This
approach is acommon method used in cryptanalysis.

We broke the theoretical guarantee that no two different
messages will never share a tag.

If you were to use CBC-MAC in a protocaol, it provides
information about specific weaknesses and how not to use it.

Generalized

e Foranylengtha,b:M(a)® b,a||bhave
same tag
e M(al|b)=M(M(a)eb)

Safer CBC-MAC for variable length messages

For a message m of length [: n n

1. Construct s by prepending the length of m to the message:

s = concat(l, m) 9 69
2. Padsuntil the length is a multiple of the block size
3. Apply CBC-MAC to the padded string s.
4. Output the last ciphertext block, or a part of it. Don’t
output intermediates.

e NowsM(a||b)!=sM(sM(a) @ b)
e Because sM(al||b)=M(concat(l, a || b))

Or....

e Or encrypt output with another block cipher
under a different key (CMAC). Or use HMAC,
UMAC, GMAC.

THANKS FOR COMING T0 SECTION!
'\ % ’:

Elliptic-Curve Cryptography (ECC)

y2=x3+ax+b

e First suggested independently by
Neal Koblitz (UW Math faculty!)
¢

and Victor S. Miller in 1985
e Widespread adoption started in
the last 2 decades

\J

[visuals from Cloudflare]

Elliptic-Curve Cryptography (ECC)

Special operation: ° (“dot”)
e A°B=CA-C=D,..

Pattern behaves “randomly”
Private key: n (integer)
Public key: P (point on curve, P = nG)
Public knowledge: G (generator point)
and curve parameters

B
e nA=Ac..°A(ntimes)
e Xx(yA) =y(xA) = xyA A
e GivenpointP, hardtofindns.t.nA=P P
Y

[visuals from Cloudflare]

ECC In Practice

Wrap the graph about x and y axes
e Achieves the same effect as modulo, in RSA
e Want prime numbers as the bounds
e Elliptic Curve Discrete Logarithm Problem™

“Safe” Curves?
e NIST recommendations are “fast”, but suspicious
e djbetal. show their work for recommendations
e More: https://safecurves.cryp.to/

[visuals from Cloudflare]

https://safecurves.cr.yp.to/

ECC vs RSA

Pros:
e Same strength using smaller keys

e Smaller keys = faster computation
e ECDLP harder(?) than DLP

Cons:
e Hardtounderstand
e Hardtoimplement correctly

e Suspicious implementations (NSA &)

Symmetri FFC Lol
Security |~ Kee ¢ (DSA, DH IFC* (ECDSA,
Strength | . Orityhms v Q’V) ? (RSA) | EdDSA, DH,
& MQV)
L=3072
128 AES-128 k=3072 | f=256-383
N=1256 ‘
L=7680
192 AES-192 k=7680 | f=384-511
N=384
L=15360
256 AES-256 k= 15360 f=512+
N=512

[table from NIST (SP 800-57 PART 1 REV. 5)]

Ultimately: ECC can achieve the same security with smaller keys and faster operations.

ECC In The Wild

ECC can be substituted for (zp)>< in DL-based protocols:
e Elliptic Curve Diffie-Hellman
e Elliptic Curve Integrated Encryption Scheme
e Elliptic Curve Digital Signature Algorithm
e Edwards-curve* Digital Signature Algorithm e ﬂ R

Most digital certificates use ECDSA (e.g. P-256) N —
or EdDSA (e.g.ed25519) W_

*Twisted Edwards curve
[Wikipedia]

Certificates in Practice
&
Certificate Authority
(CA)

What are certificates

e Asecurity certificate is a small data file
used to establish the identity,
authenticity and reliability of a website.

Think of it as a passport!

e TLS/SSL: Encryption and authentication
for connections

Note that certificates are not dependent
on protocols.

Information on a certificate

e An X.509 certificate a standard format for public key certificates.
o Different versions, most common: X.509 v3
o Not all certificates require public trust

e Includes:
o publickey
o digital signature
o Issuing CA
o Additional information about the certificate

a_| Certificate

General Details Certification Path

Example: Chrome . v

Ogoogle.com Field Value

‘ [Issuer GTS CA 101, Go...
X [Flvalid from Tuesday, Januar...
Connection is secure [Flvalid to Tuesday, March ...
[ZSubject *.google.com, G...

Your information (for example, passwords or credit CIPublic key ECC (256 Bits)

)) o o [ZIPublic key para... ECDSA_P256

card numbers) is private when it is sent to this site. &)Enhanced Key ... Server Authentic...
Learn more @Sub]ect Key Id... 92429cb273a2d2...

&l Authority Key I... KeyID=98d1f86e...

Q@ Location Allow ¥ EC Encrypted
with
key size = 256

Certificate (Valid)

@ Cookies (27 in use)

Edit Properties... Copy to File...

£ Site settings

OK

Example: Firefox

0] ﬂ https://getpocket.com/explore/item/johnny-cash-s-at-folsom-prison-at-50-an-oral-histc

E @

General Media Permissions Security
Website Identity
Website: getpocket.com
Owner: This website does not supply ownership information.
Verified by: Amazon
Expires on: Friday, December 17, 2021

Privacy & History

Have | visited this website prior to today? Yes, once
Is this website storing information on my computer? Yes, cookies
Have | saved any passwords for this website? No

Technical Details
Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 128 bit keys, TLS 1.2)
The page you are viewing was encrypted before being transmitted over the Internet.

@ Page Info — https://getpocket.com/explore/item/johnny-cash-s-at-folsom-prison O X

View Certificate

Clear Cookies and Site Data

View Saved Passwords

Encryption makes it difficult for unauthorized people to view information traveling between computers. It is
therefore unlikely that anyone read this page as it traveled across the network.

Help

Certificate

getpocket.com

Amazon Amazon Root CA 1

Subject Name

Common Name

Issuer Name

Country
Organization
Organizational Unit
Common Name

Validity

Not Before
Not After

Subject Alt Names

DNS Name
DNS Name
DNS Name
DNS Name
DNS Name
DNS Name
DNS Name
DNS Name
DNS Name
DNS Name
DNS Name

Public Key Info

Algorithm
Key Size
Exponent
Modulus

Miscellaneous

Serial Number
Signature Algorithm
Version

getpocket.com

us

Amazon
Server CA 1B
Amazon

11/17/2020, 4:00:00 PM (Pacific Standard Time)
12/17/2021, 3:59:59 PM (Pacific Standard Time)

getpocket.com

readitlater.com R S A E nc ry pt e d
pocket.co

www.getpocket.com

I.ge!pocket:c?m (S H A' 2 5 6) wW i t h
theproductivitypack.com key S i ze = 2 O 4 8

www.readitlater.com
aproductiveyear.com
readitlaterlist.com

www.readitlaterlist.com
api.getpocket.com

RSA
2048
65537
98:EC:74:12:DAE3:35:DA:79:4A:EC:68:74:99:A4:A8:E9:49:E4:F2:9B:F4:94:2A:7D:B...

OE:83:4D:9F:38:A0:D9:5A:AA:50:25:7B:C6:98:00:27
SHA-256 with RSA Encryption

The Handshake

= —— &

e Client says hello

The Handshake

] —=

e Server hello
e Client certificate request

The Handshake

] —=

Client certificate

Client sends key info (encrypted with server’s public key)
Certificate verify (with digital signature)

Finished message (encrypted with symmetric key)

The Handshake

- =&

Finished message (encrypted with symmetric key)

Chain of Trust

a_ Certificate
General Details Certification Path

Certification path

5l Google Trust Services - GlobalSign Root CA-R2
-5 GTS CA 101

~~~~~ 5 *.google.com

Certificate

getpocket.com Amazon Amazon Root CA 1

Subject Name

Country us
Organization Amazon
Common Name Amazon Root CA 1



Certificate Authority (CA)

Client's Root Truststore
A company or

organization that acts to
validate the identities of v' ‘ _ || %

entities and bind them to
cryptographic keys
through the issuance of
digital certificates.

nnnnnnnn

User/Client End-Entity ntermediate Root



Digital Sighatures & Root Certificates
Signer g

Hash i
/ —l —— EOCTYPLION  —— 1110100101

Algorithm
Data Hash o-rl Digitally Signed
Private Key Document
Hash ifi
_ —eeeeey | 1000111010 Verifier
2, Algorithm - Signature is valid
Hash when hash values
are equal.

1110100101 ——— D@ C[Y P10 — | 1000111010

Digitally Signed Hash
Document

Public Key



Certification Path

BBy Pyly

5//%\\\
E;L
TY LE PR

5%

=4

The hierarchy:
Website certificate - Intermediate
CA certificate - Root CA certificate

Multiple certification paths could
exist - could lead to errors



Certificate Errors

1. Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to self-signed.badssl.com. If you visit this site,
attackers could try to steal information like your passwords, emails, or credit card details.

Invalid certificate

server?

There is a problem with this website’s security certificate.

The security certificate presented by this website was not issued by a trusted certificate authority:
The security certificate presented by this website has expired or is not yet valid
The security certificate presented by this website was issued for a different website's address.

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the

server.

We recommend that you close this webpage and do not continue to this website.

s C  fx bup//googlecom | | Show certificate

Opera cannot verify the identity of the server
“www.facebook.com”, due to a certificate problem. The server
could be trying to trick you. Would you like to continue to the

Continue Anyway Cancel

Your connection is not private

Attacker

g
passwords, messages, or credit cards,

ying to steal your information from google.com (for example,

@ Click here to close this webpage.

& Continue to this website (not recommended)

® More information

——

Safari is using an to .com.

Encryption with a digital certificate keeps information private as it's sent to or from the
https website macreports.com.

| Show Certificate ————




The Heartbleed Bug

e InMarch 2014, Google discovered a programming mistake in the popular
OpenSSL library’s implementation of the TLS Heartbeat Extension.

e Allows attackers to read sensitive memory from vulnerable servers, potentially
including cryptographic keys, login credentials, and other private data.

e Recovery:
Patching, revocation of the keys, reissuing keys and replacing certificates.

e Lesson:
Support for critical projects;
Develop a method for scalable revocation that can gracefully
accommodate mass revocation events;
Vulnerability disclosure;
Notification and patching;




Certificate Rotation

e The replacement of existing certificates with new ones
Happens when:
1. Any certificate expires.
2. Anew CA authority is substituted for the old; thus requiring a
replacement root certificate for the cluster.
3. New or modified constraints need to be imposed on one or
more certificates.
4. A security breach has occurred, such that existing
certificate-chains can no longer be trusted.

e Example:

Internal certificate rotation within a company: use of thumbprints
vs subject name




Certificate Transparency =i

Used for monitoring and auditing digital certificates

Steps: =
o Website owner requests a certificate from the CA >
o CAissues a precertificate
o CAsends precertificates to logs -
o  Precertificates are added to the logs [ﬁ F§ S
o Logs returns signed certificate timestamps (SCTs) to the CA
o CAssend the certificate to the domain owner Q%D
o Browsers and user agents help keep the web secure (1)
o Logs are cryptographically monitored




.

3 .

% - >

WS
Y

Holiday House

CERTIFICATE oF GRADU AT\

This certifies that

Murr1 Pok rorsks

esstully € ompleted

BasicTr aining

GOOD DOG

Z/n/zol(: Toeo Mty

Thanks for
coming to
section!



