
Section 5
Public Key Crypto Topics:
RSA, Cryptanalysis with CBC-MAC

● Homework 2 due next Friday (11/5)

○ Individual assignment

○ Hands-on cryptography

● Final Project checkpoint #1 due next next Friday (11/12)

○ Group members’ names and UWNetIDs

○ Presentation topic

Administrivia

RSA:
Key generation,
encryption, and
decryption

Alice wants to send Bob an encrypted message

● Goal: Confidentiality

● Problem: Eve can intercept key

Public Key Cryptography Review

Solution: public key cryptography (aka asymmetric cryptography)
● Public-private keypair

● Alice encrypts using Bob’s public key

● Bob decrypts using Bob’s private key

Public Key Cryptography Review

Key generation:
● Generate large primes p, q

● Compute N=pq and φ(N)=(p-1)(q-1)

● Choose e coprime to φ(N)
○ Typically e=3 or e=216+1=65537

● Find (unique) d such that ed ≡ 1 (mod φ(N))

○ (equivalent to solving 1 = (e・d) mod φ(n))

Public key = (e, N); Private key = (d, N)

Encryption of m: c = me mod N

Decryption of c: cd mod N = (me mod N)d mod N = m1 mod N = m

RSA Cryptosystem Review

Adi Shamir, Ron Rivest, Len Adleman
[Photo from Dan Wright]

Public key: N = 33, e = 7

Step 1: Find φ(N)

Step 2: Find the decryption key, d

- ed ≡ 1 (mod φ(N))

Step 3: Decrypt the cryptogram

- cd mod N = m

- ‘A’ = 1, ‘B’ = 2, ...

RSA Practice
Cryptograms:

12 14 27 20 1 6 16 27

6 1 25 2 1 14 12

7 15 9 2 14 12 1 20 28 14 12 27

16 27 20 1 26 14 12 12 27

Cowabunga!

“RSA problem”: decrypt only using the public key
● Factoring N is hard

● No known efficient algorithm

● Trapdoor function: easy to go forward, hard to go back

RSA Factoring Challenge (1991-2007)
● Cash prizes for factoring large N values (up to $200,000 (!))

● Only the smallest 23 of 54 factored so far...

Shor’s Algorithm
● Quantum computer algorithm to factor integers

● Largest number factored so far: 21 😎

RSA Strength
RSA-2048:
25195908475657893494027183240
04839857142928212620403202777
71378360436620207075955562640
18525880784406918290641249515
08218929855914917618450280848
91200728449926873928072877767
35971418347270261896375014971
82469116507761337985909570009
73304597488084284017974291006
42458691817195118746121515172
65463228221686998754918242243
36372590851418654620435767984
23387184774447920739934236584
82382428119816381501067481045
16603773060562016196762561338
44143603833904414952634432190
11465754445417842402092461651
57233507787077498171257724679
62926386356373289912154831438
16789988504044536402352738195
13786365643912120103971228221
20720357

● Still used today but mostly in legacy applications

○ SSH keys, TLS, etc.

○ But not preferred...

● Need big keys for RSA

○ At least 2048 bits

● Bigger keys ⇒ slower computation

● Modern encryption schemes exist, such as Elliptic-Curve

Cryptography (ECC)

Explanation and Diagram for ECC

RSA Today

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

Demonstration:
Finding vulnerabilities
in CBC-MAC with
cryptanalysis

Is encryption (confidentiality) enough?

“Final!!!
KNE 110
Monday
2:30PM”

dkohlbre@cs
AES 128-bit key,
CBC mode

ok

In this case, an adversary
doesn’t gain anything

important by learning the
content of this message.

Scenario: David wants to send out an email about exam times - and a hacker
has learned the encryption key

Is encryption (confidentiality) enough?

“Final!!!
KNE 110
Saturday
12:30AM”

484 Student

????

Tampers with
message in

transit

But, the attacker could tamper with the message during transmission,
and the recipient would not know - so we need to ensure integrity

MAC (Message Authentication Code)
Provides integrity and authentication: only someone who knows the

KEY can compute correct MAC for a given message.

When do we MAC?
The good:
Encrypt-then-MAC

MAC-then-encrypt

Not as good as

Encrypt-then-MAC

The bad (& ugly):
Encrypt-and-MAC

MAC is deterministic! Same

plaintext → same MAC

How do we create a MAC?
CBC-MAC: Encrypt the message in CBC mode, use the last block as the MAC

k = secret key Last block of
ciphertext
used as MAC

Initialization
vector is 0

*CBC-MAC is not the only MAC algorithm - today most use HMAC; we’ll show why next

Is CBC-MAC vulnerable?

● How could we find out?

● Cryptanalysis: using mathematical analysis to rigorously reason about a

cryptographic system

● Let’s use cryptanalysis to find a collision

● two different inputs leading to the same MAC tag

● (violating collision resistance)

Exercise: CBC-MAC collision vulnerability

Suppose a and b are both one block long, and suppose the

sender MACs a, b, and a || b with CBC-MAC.

An attacker who intercepts the MAC tags for these

messages can now forge the MAC for the message

b || (MK(b) ⊕ MK(a) ⊕ b)

which the sender never sent. The forged tag for this

message is equal to MK(a || b), the tag for a || b. Justify

mathematically why this is true.

a b

EK EK

TAG

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

a || b: a and b concatenated
MK(a): MAC for message a
 EK(a): ciphertext for message a

Exercise: CBC-MAC collision vulnerability

a b

EK EK

TAG

Step 1: Figure out what MK(a), MK(b), and MK(a || b)
in terms of the encryption key.

Annotate sketch with the sender’s messages and
MACs.

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

???

???

???

Prove:
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)

a b

EK EK

EK(EK(a)⊕b)

MK(a) = EK(a)
MK(b) = EK(b) (not shown)

MK(a || b) = EK(EK(a)⊕b)

EK(a) EK(a)⊕b

Exercise: CBC-MAC collision vulnerability

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Prove:
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)

b MK(b)⊕MK(a)⊕b

EK EK

???

??? ???Step 2: Figure out MK(b || (MK(b) ⊕ MK(a) ⊕ b)) .

For the MAC of the attacker’s message
b || (MK(b) ⊕ MK(a) ⊕ b), what are the values of the ???’s?

Exercise: CBC-MAC collision vulnerability

(Ferguson, Schneier, & Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley Publishing 2010. Exercise 6.3 p. 97)

Prove:
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)

b EK(b)⊕EK(a)⊕b

EK

EK

EK(EK(a) ⊕ b)

EK(b) E
K

(a) ⊕ b
 MK(b || (MK(b) ⊕ MK(a) ⊕ b))
= MK(b || (EK(b) ⊕ EK(a) ⊕ b))
= EK(EK(b) ⊕ EK(b) ⊕ EK(a) ⊕ b)

= EK(EK(a) ⊕ b) This is the same as
MK(a || b)!

Exercise: CBC-MAC collision vulnerability

These terms
cancel out

Prove:
MK(b || (MK(b) ⊕ MK(a) ⊕ b)) = MK(a || b)

So what?
● We can prove, just using the specification of CBC-MAC, that the

messages b || (M(b) ⊕ M(a) ⊕ b) and a || b share the same tag. This
approach is a common method used in cryptanalysis.

● We broke the theoretical guarantee that no two different
messages will never share a tag.

● If you were to use CBC-MAC in a protocol, it provides
information about specific weaknesses and how not to use it.

Generalized

● For any length a, b: M(a) ⊕ b, a || b have
same tag

● M(a || b) = M(M(a) ⊕ b)

a_n

EK EK

M(a||b)

M(a)

a_1 ... b_n

EK

b_1 ...

EK

Safer CBC-MAC for variable length messages

For a message m of length l:

1. Construct s by prepending the length of m to the message:
s = concat(l, m)

2. Pad s until the length is a multiple of the block size
3. Apply CBC-MAC to the padded string s.
4. Output the last ciphertext block, or a part of it. Don’t

output intermediates.

● Now sM(a || b) != sM(sM(a) ⊕ b)
● Because sM(a||b)=M(concat(l, a || b))

l + pad

EK EK

b1

TAG

EK

bl...

...

Or….

● Or encrypt output with another block cipher
under a different key (CMAC). Or use HMAC,
UMAC, GMAC.

Thanks for coming to section!

y2 = x3 + ax + b

● First suggested independently by

Neal Koblitz (UW Math faculty!)

and Victor S. Miller in 1985

● Widespread adoption started in

the last 2 decades

Elliptic-Curve Cryptography (ECC)

[visuals from Cloudflare]

Special operation: ∘ (“dot”)
● A ∘ B = C, A ∘ C = D, …

● nA = A ∘ … ∘ A (n times)

● x(yA) = y(xA) = xyA

● Given point P, hard to find n s.t. nA = P

● Pattern behaves “randomly”

Private key: n (integer)

Public key: P (point on curve, P = nG)

Public knowledge: G (generator point)

and curve parameters

Elliptic-Curve Cryptography (ECC)

[visuals from Cloudflare]

Wrap the graph about x and y axes
● Achieves the same effect as modulo, in RSA

● Want prime numbers as the bounds

● Elliptic Curve Discrete Logarithm Problem™

“Safe” Curves?
● NIST recommendations are “fast”, but suspicious

● djb et al. show their work for recommendations

● More: https://safecurves.cr.yp.to/

ECC In Practice

[visuals from Cloudflare]

https://safecurves.cr.yp.to/

Pros:
● Same strength using smaller keys

● Smaller keys ⇒ faster computation

● ECDLP harder(?) than DLP

Cons:
● Hard to understand

● Hard to implement correctly

● Suspicious implementations (NSA 🤔)

Ultimately: ECC can achieve the same security with smaller keys and faster operations.

ECC vs RSA

[table from NIST (SP 800-57 PART 1 REV. 5)]

ECC can be substituted for (𝕫
p
)✕ in DL-based protocols:

● Elliptic Curve Diffie-Hellman
● Elliptic Curve Integrated Encryption Scheme

● Elliptic Curve Digital Signature Algorithm

● Edwards-curve* Digital Signature Algorithm

Most digital certificates use ECDSA (e.g. P-256)

or EdDSA (e.g. ed25519)

ECC In The Wild

*Twisted Edwards curve
[Wikipedia]

Certificates in Practice
&

Certificate Authority
(CA)

What are certificates
● A security certificate is a small data file

used to establish the identity,

authenticity and reliability of a website.

Think of it as a passport!

● TLS/SSL: Encryption and authentication

for connections

Note that certificates are not dependent

on protocols.

● An X.509 certificate a standard format for public key certificates.
○ Different versions, most common: X.509 v3

○ Not all certificates require public trust

● Includes:
○ public key

○ digital signature

○ Issuing CA

○ Additional information about the certificate

Information on a certificate

Example: Chrome

EC Encrypted
with
key size = 256

Example: Firefox

RSA Encrypted
(SHA-256) with
key size = 2048

The Handshake

Client says hello

The Handshake

● Server hello
● Client certificate request

The Handshake

● Client certificate
● Client sends key info (encrypted with server’s public key)
● Certificate verify (with digital signature)
● Finished message (encrypted with symmetric key)

The Handshake

Finished message (encrypted with symmetric key)

Chain of Trust

A company or

organization that acts to

validate the identities of

entities and bind them to

cryptographic keys

through the issuance of

digital certificates.

Certificate Authority (CA)

Digital Signatures & Root Certificates

- The hierarchy:

Website certificate - Intermediate

CA certificate - Root CA certificate

- Multiple certification paths could

exist - could lead to errors

Certification Path

Certificate Errors

● In March 2014, Google discovered a programming mistake in the popular

OpenSSL library’s implementation of the TLS Heartbeat Extension.

● Allows attackers to read sensitive memory from vulnerable servers, potentially

including cryptographic keys, login credentials, and other private data.

● Recovery:

Patching, revocation of the keys, reissuing keys and replacing certificates.

● Lesson:

Support for critical projects;

Develop a method for scalable revocation that can gracefully

accommodate mass revocation events;

Vulnerability disclosure;

Notification and patching;

The Heartbleed Bug

● The replacement of existing certificates with new ones

Happens when:

1. Any certificate expires.

2. A new CA authority is substituted for the old; thus requiring a

replacement root certificate for the cluster.

3. New or modified constraints need to be imposed on one or

more certificates.

4. A security breach has occurred, such that existing

certificate-chains can no longer be trusted.

● Example:

Internal certificate rotation within a company: use of thumbprints

vs subject name

Certificate Rotation

● Used for monitoring and auditing digital certificates

● Steps:
○ Website owner requests a certificate from the CA

○ CA issues a precertificate

○ CA sends precertificates to logs

○ Precertificates are added to the logs

○ Logs returns signed certificate timestamps (SCTs) to the CA

○ CAs send the certificate to the domain owner

○ Browsers and user agents help keep the web secure

○ Logs are cryptographically monitored

Certificate Transparency

Thanks for
coming to

section!

