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Admin

• Lab 1: Checkpoint due today!
– Please make sure that you sign up for a Lab 1 

Group in Canvas. You will need to scroll *really* 
far down in the Groups interface...
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Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a 

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret 

key sk.  
– Hard concept to understand, and revolutionary! 

Inventors won Turing Award -
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Symmetric Setting
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Both communicating parties have access to a 
shared random string K, called the key.



Asymmetric Setting
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Each party creates a public key pk and a secret key sk.
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Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a 

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret 

key sk.  
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Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a 

shared random string K, called the key.
– Challenge: How do you privately share a key?

• Asymmetric cryptography
– Each party creates a public key pk and a secret 

key sk.  
– Challenge: How do you validate a public key?
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Ingredient: Randomness

• Many applications (especially security ones) 
require randomness

• Explicit uses:
– Generate secret cryptographic keys
– Generate random initialization vectors for encryption

• Other ǲnon-ob�io�sǳ �sesǣ
– Generate passwords for new users
– Shuffle the order of votes (in an electronic voting 

machine)
– Shuffle cards (for an online gambling site)
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C’s rand() Function

• C has a built-in random function:  rand()
unsigned long int next = 1; 

/* rand:  return pseudo-random integer on 0..32767 */ 

int rand(void) {
next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

} 

/* srand:  set seed for rand() */

void srand(unsigned int seed) { 
next = seed;

}

• Problemǣ  donǯt �se rand() for security-critical applications!
– Given a few sample outputs, you can predict subsequent ones
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More detailsǣ ǲHo� We Learned to Cheat at Online Pokerǣ A St�d� in Soft�are Sec�rit�ǳ 
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php


PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Son�ǯs PS͗
• Key used to sign software Ȃ now can load any software on PS3 

and it �ill e�ec�te as ǲtr�stedǳ
• Due to bad random number: same ǲrandomǳ �al�e �sed to sign 

all system updates
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http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/


Obtaining Pseudorandom Numbers

• For sec�rit� applicationsǡ �ant ǲcryptographically 
secure pse�dorandom n�mbersǳ

• Libraries include cryptographically secure 
pseudorandom number generators (CSPRNG)

• Linux:
– /dev/random
– /dev/urandom - nonblocking, possibly less entropy

• Internally:
– Entropy pool gathered from multiple sources 

• e.g., mouse/keyboard timings

• Challenges with embedded systems, saved VMs
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Now: Symmetric Encryption
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Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.
Goal: send a message confidentially.
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?
---------------

Ignore for now: How is this achieved in practice??



One-Time Pad
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ί ͕͔͕͕͕͕͔͕ǥ
---------------

ί ͔͔͕͕͔͔͕͔ǥ
͕͔͔͔͕͕͕͕ǥ�

͔͔͕͕͔͔͕͔ǥ ί
�

͕͔͕͕͕͕͔͕ǥ

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext � key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext � key = 
(plaintext � key) � key =
plaintext � (key � key) =
plaintext 

Cipher achieves perfect secrecy if and only if                           
there are as many possible keys as possible plaintexts,            
and every key is equally likely   (Claude Shannon, 1949)



Advantages of One-Time Pad

• Easy to compute
– Encryption and decryption are the same operation
– Bitwise XOR is very cheap to compute

• As secure as theoretically possible
– Given a ciphertext, all plaintexts are equally likely, 

regardless of attackerǯs comp�tational reso�rces
– ǥas long as the key sequence is truly random

• True randomness is expensive to obtain in large quantities

– ǥas long as each key is same length as plaintext
• But how does sender communicate the key to receiver?
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Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
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Dangers of Reuse
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ί ͔͔͔͔͔͔͔͔ǥ
---------------

ί ͔͔͕͕͔͔͕͔ǥ
͔͔͕͕͔͔͕͔ǥ�

͔͔͕͕͔͔͕͔ǥ ί
�

͔͔͔͔͔͔͔͔ǥP1
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ί ͕͕͕͕͕͕͕͕ǥ
---------------

ί ͔͔͕͕͔͔͕͔ǥ
͕͕͔͔͕͕͔͕ǥ�

P2
C2

Learn relationship between plaintexts
C1�C2 = (P1�K)�(P2�K) = 
(P1�P2)�(K�K) = P1�P2



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts
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Integrity?
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ί ͕͔͕͕͕͕͔͕ǥ
---------------

ί ͔͔͕͕͔͔͕͔ǥ
͕͔͔͔͕͕͕͕ǥ�

͔͔͕͕͔͔͕͔ǥ ί
�

͕͔͕͕͕͕͔͕ǥ

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext � key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext � key = 
(plaintext � key) � key =
plaintext � (key � key) =
plaintext 

0

0



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
– One-time pad only guarantees confidentiality
– Attacker cannot recover plaintext, but can 

easily change it to something else

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 23



Reducing Key Size

• What to do when it is infeasible to pre-share huge 
random keys?
– When one-time pad is �nrealisticǥ

• Use special cryptographic primitives:                      
block ciphers, stream ciphers
– Single key can be re-used (with some restrictions)
– Not as theoretically secure as one-time pad
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Stream Ciphers

• One-time pad: Ciphertext(Key,Message)=Message�Key
– Key must be a random bit sequence as long as message

• Ideaǣ replace ǲrandomǳ �ith ǲpse�do-randomǳ
– Use a pseudo-random number generator (PRNG)
– PRNG takes a short, truly random secret seed and 

e�pands it into a long ǲrandom-lookingǳ seq�ence
• E.g., 128-bit seed into a 106-bit 

pseudo-random sequence

• Ciphertext(Key,Msg)=Msg�PRNG(Key)
– Message processed bit by bit (like one-time pad)
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No efficient algorithm can tell
this sequence from truly random



Block Ciphers

• Operates on a single ch�nk ȋǲblockǳȌ of plainte�t
– For example, 64 bits for DES, 128 bits for AES
– Each key defines a different permutation
– Same key is reused for each block (can use short keys)
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More on block ciphers next time!

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 30


