
CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography
[Symmetric Encryption]

Spring 2020

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

Admin

• Lab 1: Checkpoint due today!
– Please make sure that you sign up for a Lab 1

Group in Canvas. You will need to scroll *really*
far down in the Groups interface...

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 2

Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret

key sk.
– Hard concept to understand, and revolutionary!

Inventors won Turing Award -

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 3

Symmetric Setting

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 4

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a
shared random string K, called the key.

Asymmetric Setting

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 5

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret

key sk.

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 6

Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a

shared random string K, called the key.
– Challenge: How do you privately share a key?

• Asymmetric cryptography
– Each party creates a public key pk and a secret

key sk.
– Challenge: How do you validate a public key?

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 7

Ingredient: Randomness

• Many applications (especially security ones)
require randomness

• Explicit uses:
– Generate secret cryptographic keys
– Generate random initialization vectors for encryption

• Other ǲnon-ob�io�sǳ �sesǣ
– Generate passwords for new users
– Shuffle the order of votes (in an electronic voting

machine)
– Shuffle cards (for an online gambling site)

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 8

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {
next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {
next = seed;

}

• Problemǣ donǯt �se rand() for security-critical applications!
– Given a few sample outputs, you can predict subsequent ones

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 9

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 10

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 11

More detailsǣ ǲHo� We Learned to Cheat at Online Pokerǣ A St�d� in Soft�are Sec�rit�ǳ
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Son�ǯs PS͗
• Key used to sign software Ȃ now can load any software on PS3

and it �ill e�ec�te as ǲtr�stedǳ
• Due to bad random number: same ǲrandomǳ �al�e �sed to sign

all system updates

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 13

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

Obtaining Pseudorandom Numbers

• For sec�rit� applicationsǡ �ant ǲcryptographically
secure pse�dorandom n�mbersǳ

• Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

• Linux:
– /dev/random
– /dev/urandom - nonblocking, possibly less entropy

• Internally:
– Entropy pool gathered from multiple sources

• e.g., mouse/keyboard timings

• Challenges with embedded systems, saved VMs
4/17/2020 CSE 484 / CSE M 584 - Spring 2020 14

Now: Symmetric Encryption

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 15

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.
Goal: send a message confidentially.

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 16

?

Ignore for now: How is this achieved in practice??

One-Time Pad

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 17

ί ͕͔͕͕͕͕͔͕ǥ

ί ͔͔͕͕͔͔͕͔ǥ
͕͔͔͔͕͕͕͕ǥ�

͔͔͕͕͔͔͕͔ǥ ί
�

͕͔͕͕͕͕͔͕ǥ

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext � key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext � key =
(plaintext � key) � key =
plaintext � (key � key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

• Easy to compute
– Encryption and decryption are the same operation
– Bitwise XOR is very cheap to compute

• As secure as theoretically possible
– Given a ciphertext, all plaintexts are equally likely,

regardless of attackerǯs comp�tational reso�rces
– ǥas long as the key sequence is truly random

• True randomness is expensive to obtain in large quantities

– ǥas long as each key is same length as plaintext
• But how does sender communicate the key to receiver?

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 18

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 19

Dangers of Reuse

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 20

ί ͔͔͔͔͔͔͔͔ǥ

ί ͔͔͕͕͔͔͕͔ǥ
͔͔͕͕͔͔͕͔ǥ�

͔͔͕͕͔͔͕͔ǥ ί
�

͔͔͔͔͔͔͔͔ǥP1
C1

ί ͕͕͕͕͕͕͕͕ǥ

ί ͔͔͕͕͔͔͕͔ǥ
͕͕͔͔͕͕͔͕ǥ�

P2
C2

Learn relationship between plaintexts
C1�C2 = (P1�K)�(P2�K) =
(P1�P2)�(K�K) = P1�P2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 21

Integrity?

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 22

ί ͕͔͕͕͕͕͔͕ǥ

ί ͔͔͕͕͔͔͕͔ǥ
͕͔͔͔͕͕͕͕ǥ�

͔͔͕͕͔͔͕͔ǥ ί
�

͕͔͕͕͕͕͔͕ǥ

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext � key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext � key =
(plaintext � key) � key =
plaintext � (key � key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
– One-time pad only guarantees confidentiality
– Attacker cannot recover plaintext, but can

easily change it to something else

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 23

Reducing Key Size

• What to do when it is infeasible to pre-share huge
random keys?
– When one-time pad is �nrealisticǥ

• Use special cryptographic primitives:
block ciphers, stream ciphers
– Single key can be re-used (with some restrictions)
– Not as theoretically secure as one-time pad

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 24

Stream Ciphers

• One-time pad: Ciphertext(Key,Message)=Message�Key
– Key must be a random bit sequence as long as message

• Ideaǣ replace ǲrandomǳ �ith ǲpse�do-randomǳ
– Use a pseudo-random number generator (PRNG)
– PRNG takes a short, truly random secret seed and

e�pands it into a long ǲrandom-lookingǳ seq�ence
• E.g., 128-bit seed into a 106-bit

pseudo-random sequence

• Ciphertext(Key,Msg)=Msg�PRNG(Key)
– Message processed bit by bit (like one-time pad)

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 25

No efficient algorithm can tell
this sequence from truly random

Block Ciphers

• Operates on a single ch�nk ȋǲblockǳȌ of plainte�t
– For example, 64 bits for DES, 128 bits for AES
– Each key defines a different permutation
– Same key is reused for each block (can use short keys)

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 26

Plaintext

Ciphertext

block
cipherKey

More on block ciphers next time!

4/17/2020 CSE 484 / CSE M 584 - Spring 2020 30

