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* Lab 1: Checkpoint due today!

— Please make sure that you sign up for a Lab 1
Group in Canvas. You will need to scroll *really*
far down in the Groups interface... (&5



Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret
key sk.

— Hard concept to understand, and revolutionary!
Inventors won Turing Award ©
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Symmetric Setting

Both communicating parties have access to a
shared random string K, called the key.
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Asymmetric Setting

Each party creates a public key pk and a secret key sk.
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Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret
key sk.
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Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

— Challenge: How do you privately share a key?
* Asymmetric cryptography

— Each party creates a public key pk and a secret
key sk.

— Challenge: How do you validate a public key?
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Ingredient: Randomness

* Many applications (especially security ones)
require randomness

* Explicit uses:
— Generate secret cryptographic keys
— Generate random initialization vectors for encryption -

e Other “non-obvious” uses:
— Generate passwords for new users

— Shuffle the order of votes (in an electronic voting
machine)

— Shuffle cards (for an online gambling site)
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C’s rand() Function

* (Chas a built-in random function: rand()

unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

Q)
int rand(void) { U
next = next * 1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;)

}

/* srand: set seed for rand() */
void srand (unsigned int seed) { <<§;>

—

| next = seed; ggz- @ﬁ@ﬂ

e Problem: don’t use rand() for security-critical applications!
— Given a few sample outputs, you can predict subsequent ones
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&% A World of Action!

mamajoe: Hey guys, Big B is in!

Dealer Text |

Leave 584330
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#%» PokerGUI

Game Parameters
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More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer gambling.ph
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PS3 and Randomness

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

* 2010/2011: Hackers found/released private root key for Sony’s PS3

* Key used to sign software — now can load any software on PS3
and it will execute as “trusted”

* Due to bad random number: same “random” value used to sign
all system updates
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Obtaining Pseudorandom Numbers

* For security applications, want “cryptographically
secure pseudorandom numbers”

* Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

* Linux: LV

— /dev/random & Lloc¥-t

— /dev/urandom - nonblocking, possibly less entropy &~
* Internally:

— Entropy poal gathered from multiple sources

* e.g.,mouse/keyboard timings

 Challenges with embedded systems, saved VMs &~
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Now: Symmetric Encryption
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Confidentiality: Basic Problem

I—=

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially. /I

Y

lgnore for now: How is this achieved in practice?:
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One-Time Pad
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Key is a random bit sequence :

as long as the plaintext Decrypt by bitwise XOR of
ciphertext and key:
ciphertext @ key =

Encrypt by bitwise XOR of (plaintext @ key) @ ke
plaintext and key: p%m@

ciphertext = plaintext @ key | | plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon,1949)
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Advantages of One-Time Pad

* Easy to compute
— Encryption and decryption are the same operation
— Bitwise XOR is very cheap to compute

* Assecure as theoretically possible

— Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources

— ...as long as the key sequenceiis truly random
* True randomness is expensive to obtain in large quantities

— ...as long as each key is same length as plaintext

* But how does sender communicate the key to receiver?
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Problems with One-Time Pad

* (1) Key must be as long as the plaintext
— Impractical in most realistic scenarios
— Still used for diplomatic and intelligence traffic

* (2) Insecure if keys are reused
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Problems with One-Time Pad

* (1) Key must be as long as the plaintext
— Impractical in most realistic scenarios
— Still used for diplomatic and intelligence traffic

* (2) Insecure if keys are reused
— Attacker can obtain XOR of plaintexts
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Integrity?
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Key is a random bit sequence .
as ?Iong as the plaintexc’]c Decrypt by bitwise XOR of
ciphertext and key:
ciphertext @ key =
Encrypt by bitwise XOR of (plaintext ® key) @ key =
plaintext and key: plaintext © (key © key) =
ciphertext = plaintext ® key | [ plaintext
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Problems with One-Time Pad

* (1) Key must be as long as the plaintext
— Impractical in most realistic scenarios
— Still used for diplomatic and intelligence traffic

* (2) Insecure if keys are reused
— Attacker can obtain XOR of plaintexts
* (3) Does not guarantee integrity

— One-time pad only guarantees confidentiality

— Attacker cannot recover plaintext, but can
easily change it to something else
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Reducing Key Size

* What to do when it is infeasible to pre-share huge
random keys?

— When one-time pad is unrealistic...
* Use special cryptographic primitives:
block ciphers, stream ciphers

— Single key can be re-used (with some restrictions)
— Not as theoretically secure as one-time pad

4/17/2020 CSE 484 [ CSE M 584 - Spring 2020 24
pring



Stream Ciphers LT:’g/l

* One-time pad: Ciphertext(Key,Message)=Message®Key
— Key must be a random bit sequence as long as message

* ldea: replace “random” with “pseudo-random”

— Use a pseudo-random number generator (PRNG) N
— PRNG takes a short, truly random secret seed and 6@&3
e ——— D

expands it into a long “random-looking” sequence
* E.g.,128-bit seed into a 10°-bit
pseudo-random sequence

* Ciphertext(Key,Msg)=Msg@®PRNG(Key)
— Message processed bit by bit (like one-time pad)
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Block Ciphers

* Operates on a single chunk (“block”) of plaintext
— For example, 64 bits for DES, 128 bits for AES
— Each key defines a different permutation
— Same key is reused for each block (can use short keys)

Plaintext

4

block
cipher

Key —_—

1
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More on block ciphers next time!
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