CSE 484 | CSE M 584: Computer Security and Privacy

Cryptography

[Symmetric Encryption] .

Spring 2020

Franziska (Franzi) Roesner
franzi(@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

Admin

* Lab 1: Checkpoint due today!

— Please make sure that you sign up for a Lab 1
Group in Canvas. You will need to scroll *really*
far down in the Groups interface... (&5

Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret
key sk.

— Hard concept to understand, and revolutionary!
Inventors won Turing Award ©

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

Symmetric Setting

Both communicating parties have access to a
shared random string K, called the key.

1M
I Decapsulate

K

Adversary

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 4

Asymmetric Setting

Each party creates a public key pk and a secret key sk.

M | M
—>| Encapsulatel I >|Decapsulate|——>

[
pkA,SkB

o R o
Alice pks pkA Bob
pka,ska ~— pks,sks

Adversary

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 5

Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret
key sk.

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

— Challenge: How do you privately share a key?
* Asymmetric cryptography

— Each party creates a public key pk and a secret
key sk.

— Challenge: How do you validate a public key?

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

Ingredient: Randomness

* Many applications (especially security ones)
require randomness

* Explicit uses:
— Generate secret cryptographic keys
— Generate random initialization vectors for encryption -

e Other “non-obvious” uses:
— Generate passwords for new users

— Shuffle the order of votes (in an electronic voting
machine)

— Shuffle cards (for an online gambling site)

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

C’s rand() Function

* (Chas a built-in random function: rand()

unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

Q)
int rand(void) { U
next = next * 1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;)

}

/* srand: set seed for rand() */
void srand (unsigned int seed) { <<§;>

—

| next = seed; ggz- @ﬁ@ﬂ

e Problem: don’t use rand() for security-critical applications!
— Given a few sample outputs, you can predict subsequent ones

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 9

&% A World of Action!

mamajoe: Hey guys, Big B is in!

Dealer Text |

Leave 584330

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

#%» PokerGUI

Game Parameters

Site Parameters Reset Cancel
Hour Offset I 4 Flop Num Players |3 ,I
Minute Offset I -1 ;I % o % 5 1 . Your Position m
Second Offset I §§ ii q-*.f- Your Cards ISC IJh
Ll + ¢ ¢]
Shuffle Button L 6 2 £ Flop I‘JS ISC l2d
Time [16:21:40 A BT
Foo| Foo| Foo| FoLD | FOLD | FOLD | 3 1 2
See v e
- 9 J |
L R 2 S H
& » oa v :,%q
‘ ’ t"' ’ Q 8 l"
| | | | | | |

Player 3 IF‘IayelZ | You

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer gambling.ph

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 1

http://www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

* 2010/2011: Hackers found/released private root key for Sony’s PS3

* Key used to sign software — now can load any software on PS3
and it will execute as “trusted”

* Due to bad random number: same “random” value used to sign
all system updates

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 13

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

Obtaining Pseudorandom Numbers

* For security applications, want “cryptographically
secure pseudorandom numbers”

* Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

* Linux: LV

— /dev/random & Lloc¥-t

— /dev/urandom - nonblocking, possibly less entropy &~
* Internally:

— Entropy poal gathered from multiple sources

* e.g.,mouse/keyboard timings

 Challenges with embedded systems, saved VMs &~

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 14

Now: Symmetric Encryption

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

Confidentiality: Basic Problem

I—=

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially. /I

Y

lgnore for now: How is this achieved in practice?:

4/17/2020 CSE 484 [CSE M 584 - Spring 2020 16
pring

One-Time Pad
¢W«.€~x(—

P\os nier 10111101

=10111101.. (,‘\()\/\Ukﬁr
—""\AEI—) —> 10001111.. @

B==- co110070.. oo11oo1o ==
T

Key is a random bit sequence :

as long as the plaintext Decrypt by bitwise XOR of
ciphertext and key:
ciphertext @ key =

Encrypt by bitwise XOR of (plaintext @ key) @ ke
plaintext and key: p%m@

ciphertext = plaintext @ key | | plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon,1949)

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 17

Advantages of One-Time Pad

* Easy to compute
— Encryption and decryption are the same operation
— Bitwise XOR is very cheap to compute

* Assecure as theoretically possible

— Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources

— ...as long as the key sequenceiis truly random
* True randomness is expensive to obtain in large quantities

— ...as long as each key is same length as plaintext

* But how does sender communicate the key to receiver?

4/17/2020 CSE 484 [CSE M 584 - Spring 2020 18
pring

Problems with One-Time Pad

* (1) Key must be as long as the plaintext
— Impractical in most realistic scenarios
— Still used for diplomatic and intelligence traffic

* (2) Insecure if keys are reused

4/17/2020 CSE 484 [CSE M 584 - Spring 2020
pring

@ whaat ploA ﬂae&éﬁw'l\f?
Dangers of Reuse
— ((D\b\»&(' con vy \earw ploo ol

P1 ﬁ
00000000...
- §6%00000... C1 It -
\@—)00110010 C—B\

4 P27

h 00110010.. 00110010... = Eﬁ
: P2
: = 1111111.. C2
\@—)11001101 -
=z - 00110010.. P + C2Z = K

| learipefationship betweeprplal
@‘fi)@(P% _@
(PTI®P2)B(K®K) = PIORY) & €2 g

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 20

Problems with One-Time Pad

* (1) Key must be as long as the plaintext
— Impractical in most realistic scenarios
— Still used for diplomatic and intelligence traffic

* (2) Insecure if keys are reused
— Attacker can obtain XOR of plaintexts

4/17/2020 CSE 484 [CSE M 584 - Spring 2020
pring

21

Integrity?

0
Eﬂﬂm...
=10111101... 0
>€I—) —>X@R01111... D -

I—== - oo110070... 00110010... = [lF=g
J%

Key is a random bit sequence .
as ?Iong as the plaintexc’]c Decrypt by bitwise XOR of
ciphertext and key:
ciphertext @ key =
Encrypt by bitwise XOR of (plaintext ® key) @ key =
plaintext and key: plaintext © (key © key) =
ciphertext = plaintext ® key | [plaintext

4/17/2020 CSE 484/ CSE M 584 - Spring 2020 22

Problems with One-Time Pad

* (1) Key must be as long as the plaintext
— Impractical in most realistic scenarios
— Still used for diplomatic and intelligence traffic

* (2) Insecure if keys are reused
— Attacker can obtain XOR of plaintexts
* (3) Does not guarantee integrity

— One-time pad only guarantees confidentiality

— Attacker cannot recover plaintext, but can
easily change it to something else

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

23

Reducing Key Size

* What to do when it is infeasible to pre-share huge
random keys?

— When one-time pad is unrealistic...
* Use special cryptographic primitives:
block ciphers, stream ciphers

— Single key can be re-used (with some restrictions)
— Not as theoretically secure as one-time pad

4/17/2020 CSE 484 [CSE M 584 - Spring 2020 24
pring

Stream Ciphers LT:’g/l

* One-time pad: Ciphertext(Key,Message)=Message®Key
— Key must be a random bit sequence as long as message

* ldea: replace “random” with “pseudo-random”

— Use a pseudo-random number generator (PRNG) N
— PRNG takes a short, truly random secret seed and 6@&3
e ——— D

expands it into a long “random-looking” sequence
* E.g.,128-bit seed into a 10°-bit
pseudo-random sequence

* Ciphertext(Key,Msg)=Msg@®PRNG(Key)
— Message processed bit by bit (like one-time pad)

4/17/2020 CSE 484 [CSE M 584 - Spring 2020 25
pring

Block Ciphers

* Operates on a single chunk (“block”) of plaintext
— For example, 64 bits for DES, 128 bits for AES
— Each key defines a different permutation
— Same key is reused for each block (can use short keys)

Plaintext

4

block
cipher

Key —_—

1

4/17/2020 CSE 484/ CSE M 584 - Spring 2020

More on block ciphers next time!

4/17/2020
CSE 484/ CSE M 584 - Spring 2020
30

