CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography [Intro]

Spring 2020

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

- Lab 1: Really, seriously make sure you can access it now!
- Research readings: OK to spill onto 2nd page
- Zoom chat:
 - Please keep to direct questions/answers to limit distractions
 - But don't stop other conversations and feedback! → Discussion board, email, office hours, direct chat messages...

Software Security: More on What To Do

General Principles

- Check inputs
- Check all return values
- Least privilege
- Securely clear memory (passwords, keys, etc.)
- Failsafe defaults
- Defense in depth
 - Also: prevent, detect, respond
- NOT: security through obscurity

General Principles

- Reduce size of trusted computing base (TCB)
- Simplicity, modularity
 - But: Be careful at interface boundaries!
- Minimize attack surface
- Use vetted components
- Security by design
 - But: tension between security and other goals
- Open design? Open source? Closed source?
 - Different perspectives

Does Open Source Help?

- Different perspectives...
- Happy example?
 - Linux kernel backdoor attempt thwarted (2003)
 (http://www.freedom.to.tipker.com/2p= (72))

(http://www.freedom-to-tinker.com/?p=472)

- Sad example?
 - Heartbleed (2014)
 - Vulnerability in OpenSSL that allowed attackers to read arbitrary memory from vulnerable servers (including private keys)

http://xkcd.com/1354/

CSE 484 / CSE M 584 - Spring 2020

http://xkcd.com/1354/

CSE 484 / CSE M 584 - Spring 2020

http://xkcd.com/1354/

Vulnerability Analysis and Disclosure

- What do you do if you've found a security problem in a real system?
- Say
 - A commercial website?
 - UW grade database?
 - Boeing 787?
 - TSA procedures?

Vulnerability Analysis and Disclosure

- Suppose companies A, B, and C all have a vulnerability, but have not made the existence of that vulnerability public
- Company A has a software update prepared and ready to go that, once shipped, will fix the vulnerability; but B and C are still working on developing a patch for the vulnerability
- Company A learns that attackers are exploiting this vulnerability in the wild
- Should Company A release their patch, even if doing so means that the vulnerability now becomes public and other actors can start exploiting Companies B and C?
- Or should Company A wait until Companies B and C have patches?

Next Major Section of the Course: Cryptography

Common Communication Security Goals

Privacy of data:

Prevent exposure of information

Integrity of data:

Prevent modification of information

Recall Bigger Picture

- Cryptography only one small piece of a larger system
- Must protect entire system
 - Physical security
 - Operating system security
 - Network security
 - Users
 - Cryptography (following slides)
- Recall the weakest link

• Still, cryptography is a crucial part of our toolbox

XKCD: http://xkcd.com/538/

History

• Substitution Ciphers

– Caesar Cipher

- Transposition Ciphers
- Codebooks
- Machines
- Recommended Reading: **The Codebreakers** by David Kahn and **The Code Book** by Simon Singh.

History: Caesar Cipher (Shift Cipher)

 Plaintext letters are replaced with letters a fixed shift away in the alphabet.

- Example:
 - Plaintext: The quick brown fox jumps over the lazy dog
 - Key: Shift 3

ABCDEFGHIJKLMNOPQRSTUVWXYZ

DEFGHIJKLMNOPQRSTUVWXYZABC

- Ciphertext: wKHTX LFNEU RZQIR AMXPS VRYHU WKHOD CBGRJ

History: Caesar Cipher (Shift Cipher)

- ROT13: shift 13 (encryption and decryption are symmetric)
- What is the key space?
 26 possible shifts.
- How to attack shift ciphers?
 Brute force.

History: Substitution Cipher

- Superset of shift ciphers: each letter is substituted for another one.
- Add a secret key
- Example:
 - Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Cipher: ZEBRASCDFGHIJKLMNOPQTUVWXY
- "State of the art" for thousands of years

History: Substitution Cipher

- What is the key space? 26! ~= 2^88
- **Bigrams:** How to attack? th 1.52% en 0.55% ng 0.18% he 1.28% ed 0.53% of 0.16% to 0.52% al 0.09% in 0.94% – Frequency analysis. it 0.50% de 0.09% er 0.94% ou 0.50% se 0.08% 0.14 an 0.82% re 0.68% ea 0.47% le 0.08% nd 0.63% hi 0.46% sa 0.06% 0.12 is 0.46% si 0.05% at 0.59% on 0.57% or 0.43% ar 0.04% 0.1 nt 0.56% ti 0.34% ve 0.04% ha 0.56% as 0.33% ra 0.04% te 0.27% es 0.56% ld 0.02% 80.0 st 0.55% et 0.19% ur 0.02% **Trigrams:** 0.06 6. ion 1. the 11. nce 0.04 7.tio 2. and 12. edt 13. tis 3. tha 8. for 0.02 9. nde 4. ent 14. oft.

10.has

15. sth

History: Enigma Machine

Uses rotors (substitution cipher) that change position after each key.

Key = initial setting of rotors

Key space? 26[^]n for n rotors

Received April 4, 1977

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman^{*}

Abstract

An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences:

- Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intended recipient. Only he can decipher the message, since only he knows the corresponding decryption key.
- 2. A message can be "signed" using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in "electronic mail" and "electronic funds transfer" systems.

How Cryptosystems Work Today

- Layered approach:
 - Cryptographic primitives, like block ciphers, stream ciphers, hash functions, and one-way trapdoor permutations (examples: AES, SHA256, RSA)
 - <u>Cryptographic protocols</u>, like CBC mode encryption, CTR mode encryption, HMAC message authentication
- Public algorithms (Kerckhoff's Principle)
- Security proofs based on assumptions (not this course) 4
- Be careful about inventing your own! (If you just want to use some crypto in your system, use vetted libraries!)
- Above terms will make more sense later!

Kerckhoff's Principle

- Security of a cryptographic object should depend only on the secrecy of the secret (private) key.
- Security should not depend on the secrecy of the algorithm itself.

Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.
 - Hard concept to understand, and revolutionary! Inventors won Turing Award ©

Symmetric Setting

Both communicating parties have access to a shared random string K, called the key.

Asymmetric Setting

Each party creates a public key pk and a secret key sk.

Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.

Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
 - Challenge: How do you privately share a key?
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.
 - Challenge: How do you validate a public key?