
CSE 484 / CSE M 584: Computer Security and Privacy

Software Security:
Buffer Overflow Defenses

Spring 2020

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

Admin

• Assignments:
– Ethics form: Due today at 11:59pm!
– Homework 1: Due Friday at 11:59pm
– Lab 1: Sign up, granting access ~once per day, see forum

• Lab 1 signups notes
– Submit one public key via the form
– How will other group members get access?

• You can share the private key file (not usually best practice, but
if done with caution, okay for the threat model of this lab)

• First person with access can edit the .ssh/authorized_keys file to
add other public keys

4/8/20 CSE 484 / CSE M 584 - Spring 2020 2

Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal
stack pointer is pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

4/8/20 CSE 484 / CSE M 584 - Spring 2020 3

How Can We Attack This?
foo() {

char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??

4/8/20 CSE 484 / CSE M 584 - Spring 2020 4

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

4/8/20 CSE 484 / CSE M 584 - Spring 2020 5

ret/IP Caller’s frameSaved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

Using %n to Overwrite Return Address

4/8/20 CSE 484 / CSE M 584 - Spring 2020 6

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters in
attackString must be
equal to … what?

C allows you to concisely specify the “width” to print, causing printf to pad by printing
additional blank characters without reading anything else off the stack.

Example: printf(“%5d”, 10) will print three spaces followed by the integer: “ 10”
That is, %n will print 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

Recommended Reading

• It will be hard to do Lab 1 without:
–Reading (see course schedule):
• Smashing the Stack for Fun and Profit
• Exploiting Format String Vulnerabilities

–Attending section this week, next week

4/8/20 CSE 484 / CSE M 584 - Spring 2020 7

Buffer Overflow: Causes and Cures

• Typical memory exploit involves code injection
– Put malicious code at a predictable location in memory,

usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. …

4/8/20 CSE 484 / CSE M 584 - Spring 2020 8

Executable Space Protection

• Mark all writeable memory locations as non-
executable
– Example: Microsoft’s Data Execution Prevention (DEP)
– This blocks many code injection exploits

• Hardware support
– AMD “NX” bit (no-execute), Intel “XD” bit (executed

disable) (in post-2004 CPUs)
– Makes memory page non-executable

• Widely deployed
– Windows XP SP2+ (2004), Linux since 2004 (check

distribution), OS X 10.5+ (10.4 for stack but not heap),
Android 2.3+

4/8/20 CSE 484 / CSE M 584 - Spring 2020 9

What Does “Executable Space
Protection” Not Prevent?

4/8/20 CSE 484 / CSE M 584 - Spring 2020 10

• Can still corrupt stack …
– … or function pointers
– … or critical data on the heap

• As long as RET points into existing code,
executable space protection will not block control
transfer!
à return-to-libc exploits

return-to-libc

• Overwrite saved EIP with address of any library
routine
– Arrange stack to look like arguments

• Does not look like a huge threat
– Attacker cannot execute arbitrary code
– But … ?
• Can still call critical functions, like exec

• See lab 1, sploit 8 (extra credit)

4/8/20 CSE 484 / CSE M 584 - Spring 2020 11

return-to-libc on Steroids

• Insight: Overwritten saved EIP need not point to the
beginning of a library routine

• Any existing instruction in the code image is fine
– Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
– Execution will be transferred… to where?
– Read the word pointed to by stack pointer (ESP)

• Guess what? Its value is under attacker’s control!
– Use it as the new value for EIP

• Now control is transferred to an address of attacker’s choice!
– Increment ESP to point to the next word on the stack

4/8/20 CSE 484 / CSE M 584 - Spring 2020 12

Chaining RETs for Fun and Profit

• Can chain together sequences ending in RET
– Krahmer, “x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique” (2005)

• What is this good for?
• Answer [Shacham et al.]: everything
– Turing-complete language
– Build “gadgets” for load-store, arithmetic, logic, control

flow, system calls
– Attack can perform arbitrary computation using no

injected code at all – return-oriented programming

4/8/20 CSE 484 / CSE M 584 - Spring 2020 13

Return-Oriented Programming

4/8/20 CSE 484 / CSE M 584 - Spring 2020 14

Run-Time Checking: StackGuard

4/8/20 CSE 484 / CSE M 584 - Spring 2020 15

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Run-Time Checking: StackGuard

4/8/20 CSE 484 / CSE M 584 - Spring 2020 16

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Terminator canary: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

