CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography [Finish Asymmetric Cryptography]

Spring 2020

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

• Last day of crypto; then web security

- Want more crypto?
 - CSE 490C (Rachel Lin): https://courses.cs.washington.edu/courses/cse490c/19au/
 - Stanford Coursera (Dan Boneh): https://www.coursera.org/learn/crypto

Diffie-Hellman Key Exchange

- Alice and Bob never met and share no secrets
- <u>Public</u> info: p and g
 - p is a large prime, g is a generator of Z_p^*
 - $Z_p *=\{1, 2 ... p-1\};$ a $Z_p *$ i such that $a=g^i \mod p$
 - Modular arithmetic: numbers "wrap around" after they reach p

Diffie-Hellman: Conceptually

Why is Diffie-Hellman Secure?

- Discrete Logarithm (DL) problem:
 given g^x mod p, it's hard to extract x
 There is no known efficient algorithm for doing this
 - This is <u>not</u> enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem:
 given g^{*} and g^y, it's hard to compute g^{xy} mod p
 ... unless you know x or y, in which case it's easy
- Decisional Diffie-Hellman (DDH) problem:

given g^x and g^y , it's hard to tell the difference between $g^{xy} \mod p$ and $g^r \mod p$ where r is random

C

Properties of Diffie-Hellman

- Assuming DDH problem is hard (depends on choice of parameters!), Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Common recommendation:
 - Choose p=2q+1, where q is also a large prime
 - Choose g that generates a subgroup of order q in Z_p*
 - Eavesdropper can't tell the difference between the established key and a random value
 - In practice, often hash $g^{xy} mod p$, and use the hash as the key
 - Can use the new key for symmetric cryptography
- Diffie-Hellman protocol (by itself) does not provide authentication (against <u>active</u> attackers)
 - Person in the middle attack (also called "man in the middle attack")
 M LTM

More on Diffie-Hellman Key Exchange

• Important Note:

granod p

- We have discussed discrete logs modulo integers
- Significant advantages in using elliptic curve groups
 - Groups with some similar mathematical properties (i.e., are "groups") but have better security and performance (size) properties

٢

Public Key Encryption

Requirements for Public Key Encryption

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key <u>SK</u>, easy to compute plaintext M
 - Infeasible to learn anything about M from C without SK

RSP

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

00

Some Number Theory Facts

- ρhi φ(n)
 Euler totient function φ(n) (n≥1) is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
 - Easy to compute for primes: $\varphi(p) = p-1$

- Note that $\varphi(ab) = \varphi(a) \varphi(b)$

Why is RSA Secure?

- RSA problem: given c, n=pq, and e such that gcd(e, φ(n))=1, find m such that m^e=c mod n
 - In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c modulo n
 - There is no known efficient algorithm for doing this
- Factoring problem: given positive integer n, find primes p₁, ..., p_k such that n=p₁^{e₁}p₂<sup>e₂</sub>... p_k<sup>e_k
 </sup></sup>
- If factoring is easy, then RSA problem is easy (knowing factors means you can compute d = inverse of e mod (p-1)(q-1))
 It may be possible to break RSA without factoring n -- but if it is, we don't know how

Why RSA Decryption Works (FYI)

- $e \cdot d = 1 \mod \phi(n)$, thus $e \cdot d = 1 + k \cdot \phi(n)$ for some k
- Let m be any integer in Z_n^* (not all of Z_n) $c^d \mod n = (m^e)^d \mod n = m^{1+k \cdot \varphi(n)} \mod n$ $= (m \mod n)^* (m^{k \cdot \varphi(n)} \mod n)$
- Recall: Euler's theorem: if $a \in \mathbb{Z}_n^*$, then $a^{\phi(n)}=1 \mod n$
- $\frac{c^d \mod n}{m \mod n} = (m \mod n) * (1 \mod n)$ $= m \mod n$

Proof omitted: True for all m in Z_n, not just m in Z_n*

Why RSA Decryption Works (FYI)

- Decryption of c: $c^d \mod n = (m^e \mod n)^d \mod n = (m^e)^d \mod n = m$
- Recall n=pq and $\varphi(n)=(p-1)(q-1)$ and $ed \equiv 1 \mod \varphi(n)$
- Chinese Remainder Theorem: To show m^{ed} mod n ≡ m mod n, sufficient to show:
 - $m^{ed} \mod p \equiv m \mod p$
 - $m^{ed} \mod q \equiv m \mod q$
- If $m \equiv 0 \mod p \rightarrow m^{ed} \equiv 0 \mod p$
- Else m^{ed} = m^{ed-1}m = m^{k(q-1)(p-1)}m =m^{h(p-1)}m for some k, and h=k(q-1).
 Why? Recall how d was chosen and the definition of mod.
- Fermat Little Theorem: $m^{(p-1)h} m \equiv 1^h m \mod p \equiv m \mod p$

RSA Encryption Caveats

- Encrypted message needs to be interpreted as an integer less than n
- Don't use RSA directly for privacy <u>output is</u> deterministic! Need to pre-process input somehow
- Plain RSA also does <u>not</u> provide integrity

Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt M_G(r); r_H(M_G(r))

r is random and fresh, G and H are hash functions

Digital Signatures: Basic Idea

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

Goal: Bob sends a "digitally signed" message

- 1. To compute a signature, must know the private key
- 2. To verify a signature, only the public key is needed

RSA Signatures

- Public key is (n,e), private key is (n,d)
- To sign message m: s = m^d mod n
 - Signing & decryption are same **underlying** operation in RSA
 - It's infeasible to compute s on m if you don't know d
- To verify signature s on message m:
 verify that s^e mod n = (m^d)^e mod n = m
 - Just like encryption (for RSA primitive)
 - Anyone who knows n and e (public key) can verify signatures produced with d (private key)
- In practice, also need padding & hashing
 - Standard padding/hashing schemes exist for RSA signatures

Can also do sig) Udiscrete log

DSS Signatures

- Digital Signature Standard (DSS)
 - U.S. government standard (1991, most recent rev. 2013)
- Public key: (p, q, g, y=g^x mod p), private key: x
- Security of DSS requires hardness of discrete log
 - If could solve discrete logarithm problem, would extract x (private key) from g^x mod p (public key)
- Again: We've discussed discrete logs modulo integers; significant advantages to using elliptic curve groups instead.

Cryptography Summary

- Goal: Privacy
 - Symmetric keys:
 - One-time pad, Stream ciphers
 - Block ciphers (e.g., DES, AES) → modes: EBC, CBC, CTR
 - Public key crypto (e.g., Diffie-Hellman, RSA)
- Goal: Integrity
 - MACs, often using hash functions (e.g, SHA-256)
- Goal: Privacy and Integrity – Encrypt-then-MAC
- Goal: Authenticity (and Integrity)
 Digital signatures (e.g., RSA, DSS)