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Admin

• Lab 1 due in a week
• Homework 2 (crypto) out now (due May 8)

• Looking ahead:
– Today+Monday: Asymmetric Crypto
– Monday: Start transition to web security
• Lab 2 will be on web security
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Which Property Do We Need?

• UNIX passwords stored as hash(password)
– One-wayness: hard to recover the/a valid password

• Integrity of software distribution
– Weak collision resistance
– But software images are not really random… may need full 

collision resistance if considering malicious developers

• Private auction bidding
– Alice wants to bid B, sends H(B), later reveals B
– One-wayness: rival bidders should not recover B (this may mean 

that she needs to hash some randomness with B too)
– Collision resistance: Alice should not be able to change her mind 

to bid B’ such that H(B)=H(B’)
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Common Hash Functions

• MD5 – Don’t Use!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm)
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3:  standard released by NIST in August 2015
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SHA-1 Broken in Practice (2017)
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https://shattered.io

https://shattered.io/


Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)
– Used in SSL/TLS, mandatory for IPsec

• Construction:
– HMAC(k,m) = Hash((k⊕ipad) | Hash(k⊕opad | m))

• Why not block ciphers (at the time it was 
designed)?
– Hashing is faster than block ciphers in software
– Can easily replace one hash function with another
– There used to be US export restrictions on encryption
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Authenticated Encryption

• What if we want both privacy and integrity?
• Natural approach: combine encryption scheme and a MAC.
• But be careful!

– Obvious approach: Encrypt-and-MAC
– Problem: MAC is deterministic! same plaintext à same MAC

5/5/20 CSE 484 / CSE M 584 - Spring 2020 8

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3



Authenticated Encryption

• Instead:           
Encrypt then MAC.

• (Not as good:                    
MAC-then-Encrypt)
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Encrypt-then-MAC

EncryptKe
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Ciphertext C



Stepping Back: 
Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a 

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret 

key sk.  
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Symmetric Setting
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Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a 
shared random string K, called the key.



Asymmetric Setting
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Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary



Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob

Ignore for now: How do 
we know it’s REALLY 
Bob’s??



Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)
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Session Key Establishment
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Modular Arithmetic
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• Refresher in section yesterday
• Given g and prime p, compute:                                                              

g1 mod p, g2 mod p, … g100 mod p
– For p=11, g=10

• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …
• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …
• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)
• g=7 is a “generator” of Z11*



Diffie-Hellman Protocol (1976) 
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Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; ∀a ∈ Zp*  ∃i such that a=gi mod p
• Modular arithmetic: numbers “wrap around” after they reach p
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Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Example Diffie Hellman 
Computation
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