
CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography
[Finish Hash Functions;

Start Asymmetric Cryptography]

Spring 2020

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

Admin

• Lab 1 due in a week
• Homework 2 (crypto) out now (due May 8)

• Looking ahead:
– Today+Monday: Asymmetric Crypto
– Monday: Start transition to web security
• Lab 2 will be on web security

5/5/20 CSE 484 / CSE M 584 - Spring 2020 2

Which Property Do We Need?

• UNIX passwords stored as hash(password)
– One-wayness: hard to recover the/a valid password

• Integrity of software distribution
– Weak collision resistance
– But software images are not really random… may need full

collision resistance if considering malicious developers

• Private auction bidding
– Alice wants to bid B, sends H(B), later reveals B
– One-wayness: rival bidders should not recover B (this may mean

that she needs to hash some randomness with B too)
– Collision resistance: Alice should not be able to change her mind

to bid B’ such that H(B)=H(B’)

5/5/20 CSE 484 / CSE M 584 - Spring 2020 3

Common Hash Functions

• MD5 – Don’t Use!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm)
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3: standard released by NIST in August 2015

5/5/20 CSE 484 / CSE M 584 - Spring 2020 4

SHA-1 Broken in Practice (2017)

5/5/20 CSE 484 / CSE M 584 - Spring 2020 5

https://shattered.io

https://shattered.io/

Recall: Achieving Integrity

5/5/20 CSE 484 / CSE M 584 - Spring 2020 6

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)
– Used in SSL/TLS, mandatory for IPsec

• Construction:
– HMAC(k,m) = Hash((k⊕ipad) | Hash(k⊕opad | m))

• Why not block ciphers (at the time it was
designed)?
– Hashing is faster than block ciphers in software
– Can easily replace one hash function with another
– There used to be US export restrictions on encryption

5/5/20 CSE 484 / CSE M 584 - Spring 2020 7

Authenticated Encryption

• What if we want both privacy and integrity?
• Natural approach: combine encryption scheme and a MAC.
• But be careful!

– Obvious approach: Encrypt-and-MAC
– Problem: MAC is deterministic! same plaintext à same MAC

5/5/20 CSE 484 / CSE M 584 - Spring 2020 8

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

Authenticated Encryption

• Instead:
Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

5/5/20 CSE 484 / CSE M 584 - Spring 2020 9

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Stepping Back:
Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret

key sk.

5/5/20 CSE 484 / CSE M 584 - Spring 2019 10

Symmetric Setting

5/5/20 CSE 484 / CSE M 584 - Spring 2019 11

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a
shared random string K, called the key.

Asymmetric Setting

5/5/20 CSE 484 / CSE M 584 - Spring 2019 12

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public Key Crypto: Basic Problem

5/5/20 CSE 484 / CSE M 584 - Spring 2019 13

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob

Ignore for now: How do
we know it’s REALLY
Bob’s??

Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)

5/5/20 CSE 484 / CSE M 584 - Spring 2019 14

Session Key Establishment

5/5/20 CSE 484 / CSE M 584 15

Modular Arithmetic

5/5/20 CSE 484 / CSE M 584 - Spring 2019 16

• Refresher in section yesterday
• Given g and prime p, compute:

g1 mod p, g2 mod p, … g100 mod p
– For p=11, g=10

• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …
• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …
• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)
• g=7 is a “generator” of Z11*

Diffie-Hellman Protocol (1976)

5/5/20 CSE 484 / CSE M 584 - Spring 2020 17

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; ∀a ∈ Zp* ∃i such that a=gi mod p
• Modular arithmetic: numbers “wrap around” after they reach p

5/5/20 CSE 484 / CSE M 584 - Spring 2019 18

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Example Diffie Hellman
Computation

5/5/20 CSE 484 / CSE M 584 - Spring 2020 19

