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Last Words on Buffer Overflows…
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ASLR: Address Space Randomization

• Randomly arrange address space of key data areas 
for a process
– Base of executable region
– Position of stack
– Position of heap
– Position of libraries

• Introduced by Linux PaX project in 2001
• Adopted by OpenBSD in 2003
• Adopted by Linux in 2005
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ASLR: Address Space Randomization

• Deployment (examples)
– Linux kernel since 2.6.12 (2005+)
– Android 4.0+
– iOS 4.3+ ; OS X 10.5+
– Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target 
address (or addresses)

• ASLR more effective on 64-bit architectures
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Attacking ASLR

• NOP slides and heap spraying to increase 
likelihood for custom code (e.g., on heap)

• Brute force attacks or memory disclosures
to map out memory on the fly
– Disclosing a single address can reveal the 

location of all code within a library, depending 
on the ASLR implementation
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Other Possible Solutions

• Use safe programming languages, e.g., Java
– What about legacy C code?
– (Though Java doesn’t magically fix all security issues J)

• Static analysis of source code to find overflows
• Dynamic testing: “fuzzing”
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Other Common Software 
Security Issues…
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Another Type of Vulnerability

• Consider this code:
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char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;



Another Example
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size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Breakout Groups: Questions 1+2 on Canvas

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Implicit Cast

• Consider this code:
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char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may 
copy huge amounts 

of input into buf.



Integer Overflow

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 11

• What if len is large (e.g., len = 0xFFFFFFFF)?
• Then len + 5 = 4 (on many platforms)
• Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.

size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Another Type of Vulnerability

• Consider this code:

• Goal:  Write to file only with permission
• What can go wrong?
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if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal:  Write to file only with permission
• Attacker (in another program) can change meaning 

of “file” between access and open:   
symlink("/etc/passwd", "file");
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if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 14

PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Attacker Model

• Attacker can guess CandidatePwds through some 
standard interface

• Naive:  Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Better:  Time how long it takes to reject a 
CandidatePasswd.  Then try all possibilities for first 
character, then second, then third, ....
– Total tries:  256*8 = 2048
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Timing Attacks

• Assume there are no “typical” bugs in the software
– No buffer overflow bugs
– No format string vulnerabilities
– Good choice of randomness
– Good design

• The software may still be vulnerable to timing 
attacks
– Software exhibits input-dependent timings

• Complex and hard to fully protect against
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Other Examples

• Plenty of other examples of timings attacks
– Timing cache misses

• Extract cryptographic keys…
• Recent Spectre/Meltdown attacks

• Also many other side channels
– Power analysis
– Other sensors

• Example: Accelerometer to extract phone passcode
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Software Security: 
So what do we do?
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Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file 

formats, etc.)
• See if program crashes
– If crashes, found a bug
– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle
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General Principles

• Check inputs
• Check all return values
• Least privilege
• Securely clear memory (passwords, keys, etc.)
• Failsafe defaults
• Defense in depth
– Also: prevent, detect, respond

• NOT: security through obscurity
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General Principles

• Reduce size of trusted computing base (TCB)
• Simplicity, modularity
– But: Be careful at interface boundaries!

• Minimize attack surface
• Use vetted components
• Security by design
– But: tension between security and other goals

• Open design? Open source? Closed source?
– Different perspectives
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Does Open Source Help?

• Different perspectives…

• Happy example? 
– Linux kernel backdoor attempt thwarted (2003) 

(http://www.freedom-to-tinker.com/?p=472) 

• Sad example?
– Heartbleed (2014)

• Vulnerability in OpenSSL that allowed                                        
attackers to read arbitrary memory from                              
vulnerable servers (including private keys)
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http://www.freedom-to-tinker.com/?p=472


Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security 
problem in a real system?

• Say
– A commercial website? 
– UW grade database?
– Boeing 787?
– TSA procedures?
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