
CSE 484 / CSE M 584: Computer Security and Privacy

Software Security (Misc)

Autumn 2020

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

Last Words on Buffer Overflows…

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 2

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas
for a process
– Base of executable region
– Position of stack
– Position of heap
– Position of libraries

• Introduced by Linux PaX project in 2001
• Adopted by OpenBSD in 2003
• Adopted by Linux in 2005

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 3

ASLR: Address Space Randomization

• Deployment (examples)
– Linux kernel since 2.6.12 (2005+)
– Android 4.0+
– iOS 4.3+ ; OS X 10.5+
– Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target
address (or addresses)

• ASLR more effective on 64-bit architectures

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 4

Attacking ASLR

• NOP slides and heap spraying to increase
likelihood for custom code (e.g., on heap)

• Brute force attacks or memory disclosures
to map out memory on the fly
– Disclosing a single address can reveal the

location of all code within a library, depending
on the ASLR implementation

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 5

Other Possible Solutions

• Use safe programming languages, e.g., Java
– What about legacy C code?
– (Though Java doesn’t magically fix all security issues J)

• Static analysis of source code to find overflows
• Dynamic testing: “fuzzing”

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 6

Other Common Software
Security Issues…

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 7

Another Type of Vulnerability

• Consider this code:

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 8

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

Another Example

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 9

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Breakout Groups: Questions 1+2 on Canvas

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Implicit Cast

• Consider this code:

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 10

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may
copy huge amounts

of input into buf.

Integer Overflow

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 11

• What if len is large (e.g., len = 0xFFFFFFFF)?
• Then len + 5 = 4 (on many platforms)
• Result: Allocate a 4-byte buffer, then read a lot of

data into that buffer.

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

• Consider this code:

• Goal: Write to file only with permission
• What can go wrong?

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 12

if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));

TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal: Write to file only with permission
• Attacker (in another program) can change meaning

of “file” between access and open:
symlink("/etc/passwd", "file");

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 13

if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));

Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 14

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
– Total tries: 256*8 = 2048

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 15

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE

Timing Attacks

• Assume there are no “typical” bugs in the software
– No buffer overflow bugs
– No format string vulnerabilities
– Good choice of randomness
– Good design

• The software may still be vulnerable to timing
attacks
– Software exhibits input-dependent timings

• Complex and hard to fully protect against

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 16

Other Examples

• Plenty of other examples of timings attacks
– Timing cache misses

• Extract cryptographic keys…
• Recent Spectre/Meltdown attacks

• Also many other side channels
– Power analysis
– Other sensors

• Example: Accelerometer to extract phone passcode

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 17

Software Security:
So what do we do?

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 18

Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file

formats, etc.)
• See if program crashes
– If crashes, found a bug
– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 19

General Principles

• Check inputs
• Check all return values
• Least privilege
• Securely clear memory (passwords, keys, etc.)
• Failsafe defaults
• Defense in depth
– Also: prevent, detect, respond

• NOT: security through obscurity

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 22

General Principles

• Reduce size of trusted computing base (TCB)
• Simplicity, modularity
– But: Be careful at interface boundaries!

• Minimize attack surface
• Use vetted components
• Security by design
– But: tension between security and other goals

• Open design? Open source? Closed source?
– Different perspectives

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 23

Does Open Source Help?

• Different perspectives…

• Happy example?
– Linux kernel backdoor attempt thwarted (2003)

(http://www.freedom-to-tinker.com/?p=472)

• Sad example?
– Heartbleed (2014)

• Vulnerability in OpenSSL that allowed
attackers to read arbitrary memory from
vulnerable servers (including private keys)

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 24

http://www.freedom-to-tinker.com/?p=472

Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security
problem in a real system?

• Say
– A commercial website?
– UW grade database?
– Boeing 787?
– TSA procedures?

10/11/20 CSE 484 / CSE M 584 - Autumn 2020 28

