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Roadmap

• Mobile malware
• Mobile platforms vs. traditional platforms
• Deep dive into Android
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Mobile Malware: Threat Modeling

Q1: How might malware authors get malware 
onto phones? 

Q2: What are some goals that mobile device 
malware authors might have, or technical 
attacks they might attempt? How might this 
differ from desktop settings?
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What can go wrong?
“Threat Model” 1: Malicious applications
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What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
– Premium SMS messages 
– Track location
– Record phone calls
– Log SMS 
– Steal data
– Phishing  
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Some of these are 
unique to phones (SMS, 

rich sensor data)



What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
– User data is leaked or stolen 
• (on phone, on network, on server)

– Application is hijacked by an attacker
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Why All These Problems?

Not because smartphone OS designers don’t 
care about security…
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) 

trusted.
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Apps can do anything the UID 
they’re running under can do.



What’s Different about Mobile Platforms?

• Applications are isolated
– Each runs in a separate execution context
– No default access to file system, devices, etc.
– Different than traditional OSes where multiple 

applications run with the same user permissions!

• App Store: approval process for applications
– Market: Vendor controlled/Open
– App signing: Vendor-issued/self-signed
– User approval of permissions 
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More Details: Android

• Based on Linux
• Application sandboxes
– Applications run as                                                               

separate UIDs, in                                                                 
separate processes.

– Memory corruption                                                                
errors only lead to                                                                
arbitrary code execution in the context of the particular
application, not complete system compromise!

– (Can still escape sandbox – but must compromise Linux 
kernel to do so.) ß allows rooting
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[Enck et al.]

Since 5.0: ART (Android runtime)  
replaces Dalvik VM to run apps natively



Rooting and Jailbreaking

• Allows user to run applications with root privileges
– e.g., modify/delete system files, app management, CPU 

management, network management, etc.

• Done by exploiting vulnerability in firmware to 
install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
– Doesn’t allow “side-loading” apps, etc.
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Challenges with Isolated Apps

So mobile platforms isolate applications for 
security, but…

1. Permissions: How can applications access 
sensitive resources?

2. Communication: How can applications 
communicate with each other?
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(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent 
such attacks by limiting applications’ access to:
– System Resources (clipboard, file system).
– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant 
permissions to applications?

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 17



State of the Art
Prompts (time-of-use)
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Manifests (install-time)



State of the Art
Prompts (time-of-use) Manifests (install-time)

Disruptive, which leads to 
prompt-fatigue.
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State of the Art
Prompts (time-of-use) Manifests (install-time)

Out of context; not 
understood by users.

In practice, both are overly permissive: 
Once granted permissions, apps can misuse them.

Disruptive, which leads to 
prompt-fatigue.
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Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 21



Do users understand the warnings?

Are Manifests Usable?
[Felt et al.]
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Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?
[Felt et al.]
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Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).
• Big change! Now app developers needed to check 

for permissions or catch exceptions.
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(2) Inter-Process Communication

• Primary mechanism in Android: Intents
– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name
• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW) 
and/or data (URI and MIME type)
• Apps specify Intent Filters for their components.
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Eavesdropping and Spoofing

• Buggy apps might accidentally:
– Expose their component-to-component 

messages publicly à eavesdropping
– Act on unauthorized messages they receive      
à spoofing
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[Chin et al.]



Permission Re-Delegation

• An application without a permission gains 
additional privileges through another application.

• Settings application is                     
deputy: has permissions,
and accidentally exposes                                             
APIs that use those                   
permissions.

API

Settings

Demo 
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]
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Aside: Incomplete Isolation
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Embedded UIs and libraries always run with the host 
application’s permissions! (No same-origin policy here…)



Other Android Security Features

• Secure hardware
• Full disk encryption
• Modern memory protections (e.g., ASLR, non-

executable stack)
• Application signing
• App store review
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Android Fragmentation
• Many different variants of 

Android (unlike iOS)
– Motorola, HTC, Samsung, …

• Less secure ecosystem
– Inconsistent or incorrect 

implementations
– Slow to propagate kernel 

updates and new versions
– (Working to address, e.g., 

Project Treble)

[https://developer.android.com/about/dashbo
ards/index.html] 
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What about iOS?

• Apps are sandboxed
• Encrypted user data
– Often in the news…

• App Store review process is 
(was? maybe?) stricter
– But not infallible: e.g., see 

Wang et al. “Jekyll on iOS: 
When Benign Apps Become 
Evil” (USENIX Security 2013)
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• No “sideloading” apps
– Unless you jailbreak


