
CSE 484 / CSE M 584: Computer Security and Privacy

Mobile Platform Security

Autumn 2020

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

Roadmap

• Mobile malware
• Mobile platforms vs. traditional platforms
• Deep dive into Android

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 2

Mobile Malware: Threat Modeling

Q1: How might malware authors get malware
onto phones?

Q2: What are some goals that mobile device
malware authors might have, or technical
attacks they might attempt? How might this
differ from desktop settings?

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 3

What can go wrong?
“Threat Model” 1: Malicious applications

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 4

What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
– Premium SMS messages
– Track location
– Record phone calls
– Log SMS
– Steal data
– Phishing

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 5

Some of these are
unique to phones (SMS,

rich sensor data)

What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
– User data is leaked or stolen
• (on phone, on network, on server)

– Application is hijacked by an attacker

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 6

Why All These Problems?

Not because smartphone OS designers don’t
care about security…

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 9

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 10

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 11

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less)

trusted.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 12

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Applications are isolated
– Each runs in a separate execution context
– No default access to file system, devices, etc.
– Different than traditional OSes where multiple

applications run with the same user permissions!

• App Store: approval process for applications
– Market: Vendor controlled/Open
– App signing: Vendor-issued/self-signed
– User approval of permissions

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 13

More Details: Android

• Based on Linux
• Application sandboxes
– Applications run as

separate UIDs, in
separate processes.

– Memory corruption
errors only lead to
arbitrary code execution in the context of the particular
application, not complete system compromise!

– (Can still escape sandbox – but must compromise Linux
kernel to do so.) ß allows rooting

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 14

[Enck et al.]

Since 5.0: ART (Android runtime)
replaces Dalvik VM to run apps natively

Rooting and Jailbreaking

• Allows user to run applications with root privileges
– e.g., modify/delete system files, app management, CPU

management, network management, etc.

• Done by exploiting vulnerability in firmware to
install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
– Doesn’t allow “side-loading” apps, etc.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 15

Challenges with Isolated Apps

So mobile platforms isolate applications for
security, but…

1. Permissions: How can applications access
sensitive resources?

2. Communication: How can applications
communicate with each other?

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 16

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent
such attacks by limiting applications’ access to:
– System Resources (clipboard, file system).
– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant
permissions to applications?

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 17

State of the Art
Prompts (time-of-use)

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 18

Manifests (install-time)

State of the Art
Prompts (time-of-use) Manifests (install-time)

Disruptive, which leads to
prompt-fatigue.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 19

State of the Art
Prompts (time-of-use) Manifests (install-time)

Out of context; not
understood by users.

In practice, both are overly permissive:
Once granted permissions, apps can misuse them.

Disruptive, which leads to
prompt-fatigue.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 20

Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 21

Do users understand the warnings?

Are Manifests Usable?
[Felt et al.]

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 22

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?
[Felt et al.]

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 23

Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).
• Big change! Now app developers needed to check

for permissions or catch exceptions.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 24

(2) Inter-Process Communication

• Primary mechanism in Android: Intents
– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name
• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW)
and/or data (URI and MIME type)
• Apps specify Intent Filters for their components.

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 25

Eavesdropping and Spoofing

• Buggy apps might accidentally:
– Expose their component-to-component

messages publicly à eavesdropping
– Act on unauthorized messages they receive
à spoofing

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 26

[Chin et al.]

Permission Re-Delegation

• An application without a permission gains
additional privileges through another application.

• Settings application is
deputy: has permissions,
and accidentally exposes
APIs that use those
permissions.

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 27

Aside: Incomplete Isolation

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 28

Embedded UIs and libraries always run with the host
application’s permissions! (No same-origin policy here…)

Other Android Security Features

• Secure hardware
• Full disk encryption
• Modern memory protections (e.g., ASLR, non-

executable stack)
• Application signing
• App store review

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 29

Android Fragmentation
• Many different variants of

Android (unlike iOS)
– Motorola, HTC, Samsung, …

• Less secure ecosystem
– Inconsistent or incorrect

implementations
– Slow to propagate kernel

updates and new versions
– (Working to address, e.g.,

Project Treble)

[https://developer.android.com/about/dashbo
ards/index.html]

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 34

What about iOS?

• Apps are sandboxed
• Encrypted user data
– Often in the news…

• App Store review process is
(was? maybe?) stricter
– But not infallible: e.g., see

Wang et al. “Jekyll on iOS:
When Benign Apps Become
Evil” (USENIX Security 2013)

11/27/20 CSE 484 / CSE M 584 - Autumn 2020 35

• No “sideloading” apps
– Unless you jailbreak

