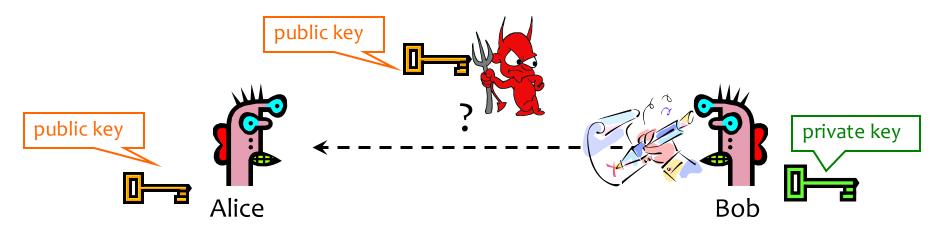
CSE 484 / CSE M 584: Computer Security and Privacy

Finish Cryptography; Start Web Security

Autumn 2020

Franziska (Franzi) Roesner franzi@cs.washington.edu


Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

- Lab 1 due today (10/30)
- Homework 2 due in a week (11/6)
- Final Project checkpoint #1 due in 2 weeks (11/13)

Confidentiality (AES) Lo symmetric (RSA) Lafeguis/Authenticity Lohooh fuctoris / outc (symmetric)

Digital Signatures: Basic Idea

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

Goal: Bob sends a "digitally signed" message

- 1. To compute a signature, must know the private key
- 2. To verify a signature, only the public key is needed

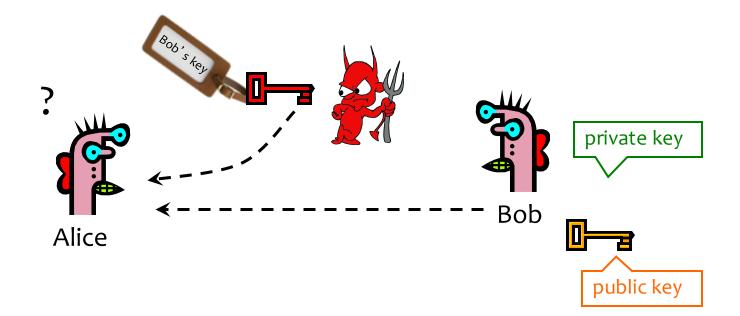
RSA Signatures

- Public key is (n,e), private key is (n,d)
- To sign message m: s = m^d mod n
 - Signing & decryption are same underlying operation in RSA
 - It's infeasible to compute s on m if you don't know d
- To verify signature s on message m:
 verify that semod n = (m^d) mod n = (m^d)
 - Just like encryption (for RSA primitive)
 - Anyone who knows n and e (public key) can verify signatures produced with d (private key)
- In practice, also need padding & hashing
 - Standard padding/hashing schemes exist for RSA signatures

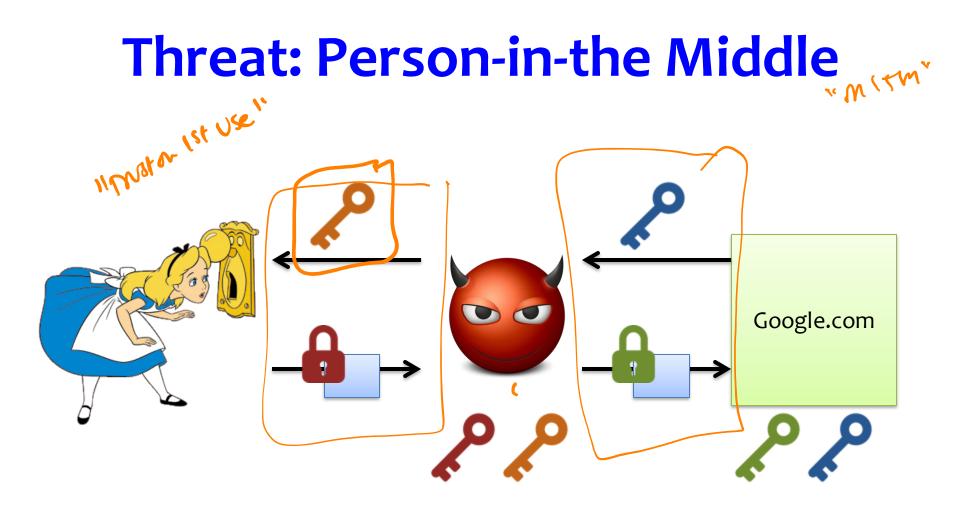
DSS Signatures

- Digital Signature Standard (DSS)
 U.S. government standard (1991, most recent rev. 2013)
 - Dublig kovy (n. g. g. v. g. mod n.), privata kovy v
- Public key: (p, q, g, y=g^x mod p), private key: x
- Security of DSS requires hardness of discrete log
 - If could solve discrete logarithm problem, would extract x (private key) from g^x mod p (public key)
- Again: We've discussed discrete logs modulo integers; significant advantages to using elliptic curve groups instead.

Cryptography Summary


- Goal: Privacy
 - Symmetric keys:
 - One-time pad, Stream ciphers
 - Block ciphers (e.g., DES, AES) → modes: EBC, CBC, CTR
 - Public key crypto (e.g., Diffie-Hellman, RSA)
- Goal: Integrity
 - MACs, often using hash functions (e.g, SHA-256)
- Goal: Privacy and Integrity
 Encrypt-then-MAC (not Encrypt and MAC)
- Goal: Authenticity (and Integrity)
 Digital signatures (e.g., RSA, DSS)

New to get shored key


Want More Crypto?

- Some suggestions:
 - CSE 490C (Rachel Lin): https://courses.cs.washington.edu/courses/cse490c/20au/
 - Stanford Coursera (Dan Boneh): https://www.coursera.org/learn/crypto

Authenticity of Public Keys

<u>Problem</u>: How does Alice know that the public key she received is really Bob's public key?

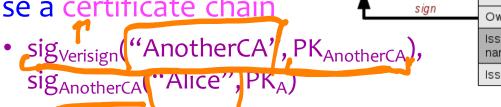
Distribution of Public Keys

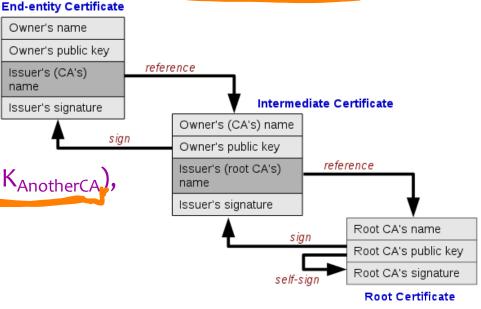
- Public announcement or public directory
 - Risks: forgery and tampering
- Public-key certificate CK= ortificate outwity
 - Signed statement specifying the key and identity
 - sig_{CA}("Bob", PK_B)
- Common approach: certificate authority (CA) vorisign
 - Single agency responsible for certifying public keys
 - After generating a private/public key pair, user proves his identity and knowledge of the private key to obtain CA's certificate for the public key (offline)
 - Every computer is <u>pre-configured</u> with CA's public key

You encounter this every day...

SSL/TLS: Encryption & authentication for connections

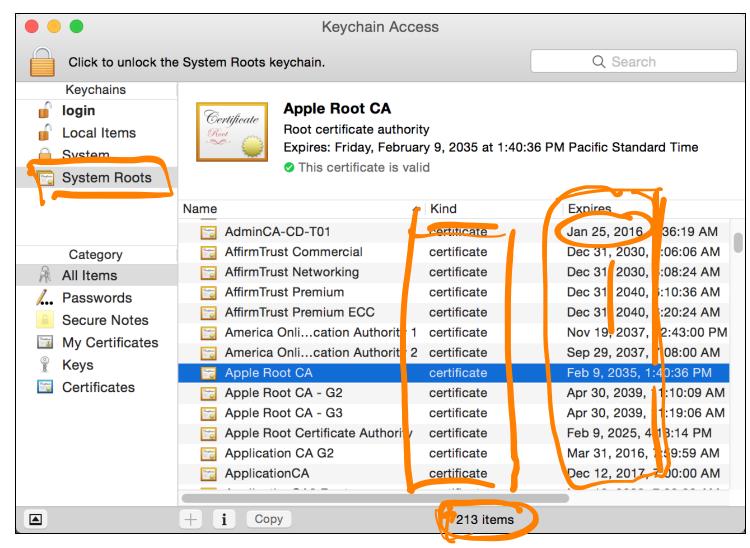
SSL/TLS High Level


- SSL/TLS consists of two protocols
 - Familiar pattern for key exchange protocols
- Handshake protocol
 - Use public-key cryptography to establish a shared secret key between the client and the server
- Record protocol
 - Use the secret symmetric key established in the handshake protocol to protect communication between the client and the server


Example of a Certificate

GeoTrust Global CA Google Internet Authority CO Second			
 *.google.com issued by: Google Internet Authority G2 Expires: Monday, July 6, 2015 at 5:00:00 PM Pacific Daylight Time This certificate is valid Details 			
Subject Name			
Country	US		
State/Province	California		SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
Locality	Mountain View	Parameters	none
Organization	Google Inc	Not Valid Before	Wednesday, April 8, 2015 at 6:40:10 AM Pacific Daylight Time
Common Name	*.google.com	Not Valid After	
	US Google Inc Google Internet Authority G2 6082711391012222858	Public Key Info Algorithm Parameters Public Key Key Size Key Usage	Elliptic Curve secp256r1 (1.2.840.10045.3.1.7) 65 bytes : 04 CB DD C1 CE AC D6 20 256 bits
Version	3	Signature	256 bytes : 34 8B 7D 64 5A 64 08 5B
1		Signature	

Hierarchical Approach


- Single CA certifying every public key is impractical
- Instead, use a trusted root authority (e.g., Verisign)
 - Everybody must know the root's public key
 - Instead of single cert, use a certificate chain

– What happens if root authority is ever compromised?

Trusted(?) Certificate Authorities

Turtles All The Way Down...

The saying holds that the world is supported by a chain of increasingly large turtles. Beneath each turtle is yet another: it is "turtles all the way down".

[Image from Wikipedia]

Many Challenges...

- Hash collisions
- Weak security at CAs

 Allows attackers to issue rogue certificates
- Users don't notice when attacks happen
 We'll talk more about this later in the course
- How do you revoke certificates?

DigiNotar is a Dutch Certificate Authority. They sell SSL certificates.

Attacking CAs

<u>Security of DigiNotar</u> <u>servers:</u>

- All core certificate servers controlled by a single admin
 password (Prod@dm1n)
- Software on publicfacing servers out of date, unpatched
- No anti-virus (could have detected attack)

Somehow, somebody managed to get a rogue SSL certificate from them on July 10th, 2011. This certificate was issued for domain name .google.com.

What can you do with such a certificate? Well, you can impersonate Google — assuming you can first reroute Internet traffic for google.com to you. This is something that can be done by a government or by a rogue ISP. Such a reroute would only affect users within that country or under that ISP.

Consequences

- Attacker needs to first divert users to an attackercontrolled site instead of Google, Yahoo, Skype, but then...
 - For example, use DNS to poison the mapping of mail.yahoo.com to an IP address
- ... "authenticate" as the real site
- ... decrypt all data sent by users
 - Email, phone conversations, Web browsing

Attempt to Fix CA Problems: Certificate Transparency

- **Problem:** browsers will think nothing is wrong with a rogue certificate until revoked
- Goal: make it impossible for a CA to issue a bad certificate for a domain without the owner of that domain knowing

- (Then what?)

• Approach: auditable certificate logs

www.certificate-transparency.org

Attempt to Fix CA Problems: Certificate Pinning

- Trust on first access: tells browser how to act on subsequent connections
- HPKP HTTP Public Key Pinning
 - Use these keys!

- HTTP response header field "Public-Key-Pins"

- HSTS HTTP Strict Transport Security
 - Only access server via HTTPS
 - HTTP response header field "Strict-Transport-Security"

Next Major Topic! Web+Browser Security