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Diffie-Hellman Key Exchange 

• Alice and Bob never met and share no secrets

• Public info: p and g

– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1};  a   Zp*   i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p
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Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Example Diffie Hellman 
Computation
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Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 
given gx mod p, it’s hard to extract x

– There is no known efficient algorithm for doing this

– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between      

gxy mod p and gr mod p where r is random
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Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of 

parameters!), Diffie-Hellman protocol is a secure key 
establishment protocol against passive attackers
– Common recommendation:

• Choose p=2q+1, where q is also a large prime

• Choose g that generates a subgroup of order q in Z_p*

– Eavesdropper can’t tell the difference between the established key 
and a random value

– In practice, often hash gxy mod p, and use the hash as the key

– Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide 
authentication (against active attackers)
– Person in the middle attack (also called “man in the middle attack”)
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Person In The Middle Attack
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More on Diffie-Hellman 
Key Exchange

• Important Note: 

– We have discussed discrete logs modulo integers

– Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) 

but have better security and performance (size) properties
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment

– Can then use shared key for symmetric crypto

• Next: public key encryption 

– For confidentiality

• Then: digital signatures

– For authenticity
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate 
a pair (public key PK, private key SK)

• Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M

– Infeasible to learn anything about M from C without SK

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

• Euler totient functionϕ(n) (n≥1) is the number of 
integers in the [1,n] interval that are relatively prime to n

– Two numbers are relatively prime if their greatest 
common divisor (gcd) is 1

– Easy to compute for primes: ϕ(p) = p-1

– Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime
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RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 1024 bits each (need primality testing, too)

– Compute n=pq and (n)=(p-1)(q-1)

– Choose small e, relatively prime to (n)
• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod (n)
• Modular inverse: d ≡ e-1 mod (n)

– Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n

• Decryption of c:   cd mod n = (me)d mod n = m
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How to 
compute?



Why RSA Decryption Works (FYI)

e*d=1 mod phi(n), thus e*d=1+k*phi(n) for some k

Let m be any integer in Zn* (not all of Zn)

cd mod n = (me)d mod n  = m1+k⋅ϕ(n) mod n

= (m mod n) * (mk⋅ϕ(n) mod n)

Recall: Euler’s thm: if a in Zn*, then aphi(n)=1 mod n

cd mod n = (m mod n) * (1 mod n)

= m mod n

Proof omitted:  True for all m in Zn, not just m in Zn*
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Why RSA Decryption Works (FYI)

• Decryption of c: cd mod n = (me mod n)d mod n = (me)d mod n = m
• Recall n=pq and ϕ(n)=(p-1)(q-1) and ed ≡ 1 mod ϕ(n)

• Chinese Remainder Theorem: To show med mod n ≡ m mod n, 
sufficient to show:
– med mod p ≡ m mod p
– med mod q ≡ m mod q

• If m ≡ 0 mod p →med ≡ 0 mod p 

• Else med = med-1m = mk(q-1)(p-1)m =mh(p-1) m for some k, and h=k(q-1). 
Why? Recall how d was chosen and the definition of mod.

• Fermat Little Theorem: m(p-1)h m ≡ 1hm mod p ≡ m mod p  
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Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that            
gcd(e, ϕ(n))=1, find m such that me=c mod n
– In other words, recover m from ciphertext c and public key (n,e) by 

taking eth root of c modulo n

– There is no known efficient algorithm for doing this

• Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing 

factors means you can compute d = inverse of e mod (p-1)(q-1))

– It may be possible to break RSA without factoring n -- but if it is, we 
don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an 
integer less than n

• Don’t use RSA directly for privacy – output is 
deterministic! Need to pre-process input somehow

• Plain RSA also does not provide integrity

– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, 
encrypt MG(r) ; rH(MG(r))

– r is random and fresh, G and H are hash functions
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Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob



RSA Signatures

• Public key is (n,e), private key is (n,d)

• To sign message m:  s = md mod n
– Signing & decryption are same underlying operation in RSA

– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:   

verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)

– Anyone who knows n and e (public key) can verify signatures 
produced with d (private key)

• In practice, also need padding & hashing
– Standard padding/hashing schemes exist for RSA signatures
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DSS Signatures

• Digital Signature Standard (DSS)

– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x

• Security of DSS requires hardness of discrete log

– If could solve discrete logarithm problem, would extract 
x (private key) from gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; 
significant advantages to using elliptic curve groups 
instead.
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Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) →modes: EBC, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)

• Goal: Integrity
– MACs, often using hash functions (e.g, SHA-256)   

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)
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Want More Crypto?

• Some suggestions:

– CSE 490C (Rachel Lin): 
https://courses.cs.washington.edu/courses/cse490c/20au/

– Stanford Coursera (Dan Boneh): 
https://www.coursera.org/learn/crypto
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