CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography[Symmetric Encryption]

Spring 2019

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Reminder: Block Ciphers

- Operates on a single chunk ("block") of plaintext
 - For example, 64 bits for DES, 128 bits for AES
 - Each key defines a different permutation of possible outputs
 - Same key is reused for each block (can use short keys)

Electronic Code Book (ECB) Mode

- Identical blocks of plaintext produce identical blocks of ciphertext
- No integrity checks: can mix and match blocks

Information Leakage in ECB Mode

[Wikipedia]

Cipher Block Chaining (CBC) Mode: Encryption

- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
 - Still does not guarantee integrity

CBC Mode: Decryption

ECB vs. CBC

[Picture due to Bart Preneel]

Initialization Vector Dangers

Found in the source code for Diebold voting machines:

Counter Mode (CTR): Encryption

- Identical blocks of plaintext encrypted differently
- Still does not guarantee integrity; Fragile if ctr repeats

Counter Mode (CTR): Decryption

When is an Encryption Scheme "Secure"?

- Hard to recover the key?
 - What if attacker can learn plaintext without learning the key?
- Hard to recover plaintext from ciphertext?
 - What if attacker learns some bits or some function of bits?

How Can a Cipher Be Attacked?

- Attackers knows ciphertext and encryption algthm
 - What else does the attacker know? Depends on the application in which the cipher is used!
- Ciphertext-only attack
- KPA: Known-plaintext attack (stronger)
 - Knows some plaintext-ciphertext pairs
- CPA: Chosen-plaintext attack (even stronger)
 - Can obtain ciphertext for any plaintext of his choice
- CCA: Chosen-ciphertext attack (very strong)
 - Can decrypt any ciphertext <u>except</u> the target

Chosen Plaintext Attack

... repeat for any PIN value

Very Informal Intuition

Minimum security requirement for a modern encryption scheme

- Security against chosen-plaintext attack (CPA)
 - Ciphertext leaks no information about the plaintext
 - Even if the attacker correctly guesses the plaintext, he cannot verify his guess
 - Every ciphertext is unique, encrypting same message twice produces completely different ciphertexts
 - Implication: encryption must be randomized or stateful
- Security against chosen-ciphertext attack (CCA)
 - Integrity protection it is not possible to change the plaintext by modifying the ciphertext

So Far: Achieving Privacy

Encryption schemes: A tool for protecting privacy.

Now: Achieving Integrity

Message authentication schemes: A tool for protecting integrity.

Integrity and authentication: only someone who knows KEY can compute correct MAC for a given message.