
CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography
[Symmetric Encryption]

Spring 2019

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.
Goal: send a message confidentially.

4/19/19 CSE 484 / CSE M 584 - Spring 2019 2

?

Ignore for now: How is this achieved in practice??

One-Time Pad

4/19/19 CSE 484 / CSE M 584 - Spring 2019 3

= 10111101…

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key =
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

• Easy to compute
– Encryption and decryption are the same operation
– Bitwise XOR is very cheap to compute

• As secure as theoretically possible
– Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
– …as long as the key sequence is truly random

• True randomness is expensive to obtain in large quantities
– …as long as each key is same length as plaintext

• But how does sender communicate the key to receiver?

4/19/19 CSE 484 / CSE M 584 - Spring 2019 4

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused

4/19/19 CSE 484 / CSE M 584 - Spring 2019 5

Dangers of Reuse

4/19/19 CSE 484 / CSE M 584 - Spring 2019 6

= 00000000…

= 00110010…
00110010…Å

00110010… =
Å

00000000…P1
C1

= 11111111…

= 00110010…
11001101…Å

P2
C2

Learn relationship between plaintexts
C1ÅC2 = (P1ÅK)Å(P2ÅK) =
(P1ÅP2)Å(KÅK) = P1ÅP2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

4/19/19 CSE 484 / CSE M 584 - Spring 2019 7

Integrity?

4/19/19 CSE 484 / CSE M 584 - Spring 2019 8

= 10111101…

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key =
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
– One-time pad only guarantees confidentiality
– Attacker cannot recover plaintext, but can

easily change it to something else

4/19/19 CSE 484 / CSE M 584 - Spring 2019 9

Reducing Key Size

• What to do when it is infeasible to pre-share huge
random keys?
– When one-time pad is unrealistic…

• Use special cryptographic primitives:
block ciphers, stream ciphers
– Single key can be re-used (with some restrictions)
– Not as theoretically secure as one-time pad

4/19/19 CSE 484 / CSE M 584 - Spring 2019 10

Stream Ciphers

• One-time pad: Ciphertext(Key,Message)=MessageÅKey
– Key must be a random bit sequence as long as message

• Idea: replace “random” with “pseudo-random”
– Use a pseudo-random number generator (PRNG)
– PRNG takes a short, truly random secret seed and

expands it into a long “random-looking” sequence
• E.g., 128-bit seed into a 106-bit

pseudo-random sequence

• Ciphertext(Key,Msg)=MsgÅPRNG(Key)
– Message processed bit by bit (like one-time pad)

4/19/19 CSE 484 / CSE M 584 - Spring 2019 11

No efficient algorithm can tell
this sequence from truly random

Block Ciphers

• Operates on a single chunk (“block”) of plaintext
– For example, 64 bits for DES, 128 bits for AES
– Each key defines a different permutation
– Same key is reused for each block (can use short keys)

4/19/19 CSE 484 / CSE M 584 - Spring 2019 12

Plaintext

Ciphertext

block
cipherKey

Keyed Permutation

• Not just shuffling of input bits!
– Suppose plaintext = “111”.

Then “111” is not the only
possible ciphertext!

• Instead:
– Permutation of possible outputs
– Use secret key to pick a permutation

4/19/19 CSE 484 / CSE M 584 - Spring 2019 13

Plaintext

Ciphertext

block
cipherKey

Keyed Permutation

4/19/19 CSE 484 / CSE M 584 - Spring 2019 14

input
possible
output

possible
output etc.

000 010 111 …
001 111 110 …
010 101 000 …
011 110 101 …
… … …
111 000 110 …

For N-bit input, 2N! possible permutations
For K-bit key, 2K possible keys

Key = 00
Key = 01

Block Cipher Security

• Result should look like a random permutation on
the inputs
– Recall: not just shuffling bits. N-bit block cipher

permutes over 2N inputs.

• Only computational guarantee of secrecy
– Not impossible to break, just very expensive

• If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

– Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

4/19/19 CSE 484 / CSE M 584 - Spring 2019 15

Block Cipher Operation (Simplified)

4/19/19 CSE 484 / CSE M 584 - Spring 2019 16

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking”way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Standard Block Ciphers

• DES: Data Encryption Standard
– Feistel structure: builds invertible function using non-

invertible ones
– Invented by IBM, issued as federal standard in 1977
– 64-bit blocks, 56-bit key + 8 bits for parity

4/19/19 CSE 484 / CSE M 584 - Spring 2019 17

DES and 56 bit keys

• 56 bit keys are quite short

• 1999: EFF DES Crack + distributed machines
– < 24 hours to find DES key

• DES ---> 3DES
– 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

4/19/19 CSE 484 / CSE M 584 - Spring 2019 18

Standard Block Ciphers

• DES: Data Encryption Standard
– Feistel structure: builds invertible function using non-

invertible ones
– Invented by IBM, issued as federal standard in 1977
– 64-bit blocks, 56-bit key + 8 bits for parity

• AES: Advanced Encryption Standard
– New federal standard as of 2001

• NIST: National Institute of Standards & Technology
– Based on the Rijndael algorithm

• Selected via an open process
– 128-bit blocks, keys can be 128, 192 or 256 bits

4/19/19 CSE 484 / CSE M 584 - Spring 2019 19

Encrypting a Large Message

• So, we’ve got a good block cipher, but our
plaintext is larger than 128-bit block size

• What should we do?

4/19/19 CSE 484 / CSE M 584 - Spring 2019 20

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext

Electronic Code Book (ECB) Mode

4/19/19 CSE 484 / CSE M 584 - Spring 2019 21

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

• Identical blocks of plaintext produce identical blocks of ciphertext
• No integrity checks: can mix and match blocks

Information Leakage in ECB Mode

4/19/19 CSE 484 / CSE M 584 - Spring 2019 22

Encrypt in ECB mode

[Wikipedia]

Cipher Block Chaining (CBC) Mode: Encryption

4/19/19 CSE 484 / CSE M 584 - Spring 2019 23

Sent with ciphertext
(preferably encrypted)

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

ÅInitialization
vector
(random)

Å Å Åkey key key key

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

CBC Mode: Decryption

4/19/19 CSE 484 / CSE M 584 - Spring 2019 24

plaintext

ciphertext

decrypt decrypt decrypt decrypt

ÅInitialization
vector Å Å Åkey key key key

ECB vs. CBC

4/19/19 CSE 484 / CSE M 584 - Spring 2019 25slide 25

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

CBC and Electronic Voting

4/19/19 CSE 484 / CSE M 584 - Spring 2019 26

Initialization
vector
(supposed to
be random)

plaintext

ciphertext

DES DES DES DES

Å Å Å Å

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

totalSize, DESKEY, NULL, DES_ENCRYPT)

key key key key

Counter Mode (CTR): Encryption

4/19/19 CSE 484 / CSE M 584 - Spring 2019 27

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

Key Key Key Key

ciphertext

• Identical blocks of plaintext encrypted differently
• Still does not guarantee integrity; Fragile if ctr repeats

Counter Mode (CTR): Decryption

4/19/19 CSE 484 / CSE M 584 - Spring 2019 28

ct ct ctct

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt

Key Key Key Key

