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Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.
Goal: send a message confidentially.
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?
---------------

Ignore for now: How is this achieved in practice??



One-Time Pad
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= 10111101…
---------------

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key = 
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext 

Cipher achieves perfect secrecy if and only if                           
there are as many possible keys as possible plaintexts,            
and every key is equally likely   (Claude Shannon, 1949)



Advantages of One-Time Pad

• Easy to compute
– Encryption and decryption are the same operation
– Bitwise XOR is very cheap to compute

• As secure as theoretically possible
– Given a ciphertext, all plaintexts are equally likely, 

regardless of attacker’s computational resources
– …as long as the key sequence is truly random

• True randomness is expensive to obtain in large quantities
– …as long as each key is same length as plaintext

• But how does sender communicate the key to receiver?

4/19/19 CSE 484 / CSE M 584 - Spring 2019 4



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
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Dangers of Reuse
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= 00000000…
---------------

= 00110010…
00110010…Å

00110010… =
Å

00000000…P1
C1

= 11111111…
---------------

= 00110010…
11001101…Å

P2
C2

Learn relationship between plaintexts
C1ÅC2 = (P1ÅK)Å(P2ÅK) = 
(P1ÅP2)Å(KÅK) = P1ÅP2



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts
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Integrity?
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= 10111101…
---------------

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key = 
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext 

0

0



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
– One-time pad only guarantees confidentiality
– Attacker cannot recover plaintext, but can 

easily change it to something else
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Reducing Key Size

• What to do when it is infeasible to pre-share huge 
random keys?
– When one-time pad is unrealistic…

• Use special cryptographic primitives:                      
block ciphers, stream ciphers
– Single key can be re-used (with some restrictions)
– Not as theoretically secure as one-time pad
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Stream Ciphers

• One-time pad: Ciphertext(Key,Message)=MessageÅKey
– Key must be a random bit sequence as long as message

• Idea: replace “random” with “pseudo-random”
– Use a pseudo-random number generator (PRNG)
– PRNG takes a short, truly random secret seed and 

expands it into a long “random-looking” sequence
• E.g., 128-bit seed into a 106-bit 

pseudo-random sequence

• Ciphertext(Key,Msg)=MsgÅPRNG(Key)
– Message processed bit by bit (like one-time pad)
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No efficient algorithm can tell
this sequence from truly random



Block Ciphers

• Operates on a single chunk (“block”) of plaintext
– For example, 64 bits for DES, 128 bits for AES
– Each key defines a different permutation
– Same key is reused for each block (can use short keys)
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Plaintext

Ciphertext

block
cipherKey



Keyed Permutation

• Not just shuffling of input bits!
– Suppose plaintext = “111”.                                                        

Then “111” is not the only                                                         
possible ciphertext!

• Instead:
– Permutation of possible outputs
– Use secret key to pick a permutation
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Plaintext

Ciphertext

block
cipherKey



Keyed Permutation
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input
possible 
output

possible 
output etc.

000 010 111 …
001 111 110 …
010 101 000 …
011 110 101 …
… … …
111 000 110 …

For N-bit input, 2N! possible permutations
For K-bit key, 2K possible keys

Key = 00
Key = 01



Block Cipher Security

• Result should look like a random permutation on 
the inputs
– Recall:  not just shuffling bits.  N-bit block cipher 

permutes over 2N inputs.

• Only computational guarantee of secrecy
– Not impossible to break, just very expensive

• If there is no efficient algorithm (unproven assumption!), then 
can only break by brute-force, try-every-possible-key search

– Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information
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Block Cipher Operation (Simplified)
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Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking”way 
to provide diffusion
(spread plaintext bits 
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible 

(for decryption)



Standard Block Ciphers

• DES: Data Encryption Standard
– Feistel structure: builds invertible function using non-

invertible ones
– Invented by IBM, issued as federal standard in 1977
– 64-bit blocks, 56-bit key + 8 bits for parity
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DES and 56 bit keys

• 56 bit keys are quite short

• 1999:  EFF DES Crack + distributed machines
– < 24 hours to find DES key

• DES ---> 3DES
– 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)
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Standard Block Ciphers

• DES: Data Encryption Standard
– Feistel structure: builds invertible function using non-

invertible ones
– Invented by IBM, issued as federal standard in 1977
– 64-bit blocks, 56-bit key + 8 bits for parity

• AES: Advanced Encryption Standard
– New federal standard as of 2001

• NIST: National Institute of Standards & Technology
– Based on the Rijndael algorithm

• Selected via an open process
– 128-bit blocks, keys can be 128, 192 or 256 bits
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Encrypting a Large Message

• So, we’ve got a good block cipher, but our 
plaintext is larger than 128-bit block size

• What should we do?
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128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext



Electronic Code Book (ECB) Mode
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plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

• Identical blocks of plaintext produce identical blocks of ciphertext
• No integrity checks: can mix and match blocks



Information Leakage in ECB Mode
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Encrypt in ECB mode

[Wikipedia]



Cipher Block Chaining (CBC) Mode: Encryption
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Sent with ciphertext
(preferably encrypted)

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

ÅInitialization
vector
(random)

Å Å Åkey key key key

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity



CBC Mode: Decryption
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plaintext

ciphertext

decrypt decrypt decrypt decrypt

ÅInitialization
vector Å Å Åkey key key key



ECB vs. CBC
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AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]



CBC and Electronic Voting
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Initialization
vector
(supposed to
be random)

plaintext

ciphertext

DES DES DES DES

Å Å Å Å

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

totalSize, DESKEY, NULL, DES_ENCRYPT)

key key key key



Counter Mode (CTR): Encryption
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ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

Key Key Key Key

ciphertext

• Identical blocks of plaintext encrypted differently
• Still does not guarantee integrity; Fragile if ctr repeats



Counter Mode (CTR): Decryption
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ct ct ctct

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt

Key Key Key Key


