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Last Words on Buffer Overflows...
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Defenses Discussed Last Time

* Executable space prevention
* Stack canaries

* Address Space Layout Randomization
(ASLR)
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Other Possible Solutions

* Use safe programming languages, e.g., Java
— What about legacy C code?
— (Though Java doesn’t magically fix all security issues ©)

 Static analysis of source code to find overflows
* Dynamic testing: “fuzzing”
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Beyond Buffer Overflows...
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Another Type of Vulnerability

e Consider this code:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O RDONLY) ;

}

* Goal: Open only regular files (not symlink, etc)
* What can go wrong?



TOCTOU (Race Condition)

e TOCTOU ==Time of Check to Time of Use:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");

return -1;

}
return open(path, O RDONLY) ;

}
* Goal: Open only regular files (not symlink, etc)

* Attacker can change meaning of path between stat
and open (and access files he or she shouldn’t)



Another Type of Vulnerability

e Consider this code:

char buf[80];
volid vulnerable() {
int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;



e Consider this code:

char buf[80];

volid vulnerable() {

int len
char *p
if (len

>

Implicit Cast

If len is negative, may
copy huge amounts
of input into buf.

read int from network();
read string from network();
sizeof buf) {

error("length too large, nice try!");
return;

}

memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;
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Another Example

size t len = read int from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)
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Integer Overflow

size t len = read int from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

* What if lenis large (e.g., len = oxFFFFFFFF)?
* Thenlen + 5 =4 (on many platforms)

* Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)




Password Checker

* Functional requirements

— PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
e Return FALSE otherwise

— RealPwd and CandidatePwd are both 8 characters long
* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

* (learly meets functional description
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Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] != CandidatePwd[i]) then
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Try all 2568 =18,446,744,073,709,551,616
possibilities
* Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then third, ....

— Total tries: 256*8 = 2048
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Timing Attacks

* Assume there are no “typical” bugs in the software
— No buffer overflow bugs
— No format string vulnerabilities
— Good choice of randomness
— Good design

* The software may still be vulnerable to timing
attacks

— Software exhibits input-dependent timings

* Complex and hard to fully protect against
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Other Examples

* Plenty of other examples of timings attacks

— Timing cache misses

* Extract cryptographic keys...
* Recent Spectre/Meltdown attacks

* Also many other side channels

— Power analysis

— Other sensors
* Example: Accelerometer to extract phone passcode
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Software Security:
So what do we do?
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Fuzz Testing

* Generate “random” inputs to program

— Sometimes conforming to input structures (file
formats, etc.)

* Seeif program crashes
— If crashes, found a bug
— Bug may be exploitable

* Surprisingly effective
* Now standard part of development lifecycle
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General Principles

* Checkinputs
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Shellshock

* Checkinputs: not just to prevent buffer overflows
* Example: Shellshock (September 2014)

— Vulnerable servers processed input from web requests

— Passed (user-provided) environment variables (like user
agent, cookies...) to CGl scripts

— Maliciously crafted environment variables exploited a
bug in bash to execute arbitrary code

env x='() { :,;}; echo Vulnerable'
bash -c¢ "echo Real Command"
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General Principles

* Checkinputs

* Check all return values

* Least privilege

 Securely clear memory (passwords, keys, etc.)
* Failsafe defaults

* Defense in depth
— Also: prevent, detect, respond

NOT: security through obscurity
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General Principles

* Reduce size of trusted computing base (TCB)
* Simplicity, modularity
— But: Be careful at interface boundaries!
* Minimize attack surface
* Use vetted component
* Security by design
— But: tension between security and other goals

* Open design? Open source? Closed source?

— Different perspectives
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Does Open Source Help?

* Different perspectives...

* Happy example:

— Linux kernel backdoor attempt thwarted (2003)
(http://www.freedom-to-tinker.com/2p=472)

* Sad example:

— Heartbleed (2014)

* Vulnerability in OpenSSL that allowed
attackers to read arbitrary memory from
vulnerable servers (including private keys)
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http://xkcd.com/1354/

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (b LETTERS).

)

ser Meg wants these 6 letters: POTATO.

O
O
o

-
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http://xkcd.com/1354/

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

ese 4 letters: BIRD.

1
f
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http://xkcd.com/1354/

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "HAT™ (500 LETTERS),

/

Meg wants these 500 letters: HAT.

N HAT. Lucas requests the "missed conne
ctions” page. Eve (administrator) wan
ts to set server’s master key to "148
35038534, Isabel wants pages about "
gnakes but not too long". User Karen
wants to change account password to a1
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Vulnerability Analysis and Disclosure

* What do you do if you’ve found a security
problem in a real system?
* Say
— A commercial website?
— UW grade database?
— Boeing 787?
— TSA procedures?
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