CSE 484 [CSE M 584: Computer Security and Privacy

Software Security (Mmisc)

Spring 2019

Franziska (Franzi) Roesner
franzi(@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Last Words on Buffer Overflows...

4/15/19 CSE 484 [CSE M 584 - Spring 2019

Defenses Discussed Last Time

* Executable space prevention
* Stack canaries

* Address Space Layout Randomization
(ASLR)

4/15/19 CSE 484 [CSE M 584 - Spring 2019

Other Possible Solutions

* Use safe programming languages, e.g., Java
— What about legacy C code?
— (Though Java doesn’t magically fix all security issues ©)

 Static analysis of source code to find overflows
* Dynamic testing: “fuzzing”

4/15/19 CSE 484 [CSE M 584 - Spring 2019

Beyond Buffer Overflows...

4/15/19 CSE 484 [CSE M 584 - Spring 2019

Another Type of Vulnerability

e Consider this code:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O RDONLY) ;

}

* Goal: Open only regular files (not symlink, etc)
* What can go wrong?

TOCTOU (Race Condition)

e TOCTOU ==Time of Check to Time of Use:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");

return -1;

}
return open(path, O RDONLY) ;

}
* Goal: Open only regular files (not symlink, etc)

* Attacker can change meaning of path between stat
and open (and access files he or she shouldn’t)

Another Type of Vulnerability

e Consider this code:

char buf[80];
volid vulnerable() {
int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

e Consider this code:

char buf[80];

volid vulnerable() {

int len
char *p
if (len

>

Implicit Cast

If len is negative, may
copy huge amounts
of input into buf.

read int from network();
read string from network();
sizeof buf) {

error("length too large, nice try!");
return;

}

memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

4/15/19

Another Example

size t len = read int from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)

CSE 484 [CSE M 584 - Spring 2019

10

Integer Overflow

size t len = read int from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

* What if lenis large (e.g., len = oxFFFFFFFF)?
* Thenlen + 5 =4 (on many platforms)

* Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)

Password Checker

* Functional requirements

— PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
e Return FALSE otherwise

— RealPwd and CandidatePwd are both 8 characters long
* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

* (learly meets functional description

4/15/19 CSE 484 [CSE M 584 - Spring 2019

12

Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] != CandidatePwd[i]) then
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Try all 2568 =18,446,744,073,709,551,616
possibilities
* Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then third,

— Total tries: 256*8 = 2048

4/15/19 CSE 484 [CSE M 584 - Spring 2019

13

Timing Attacks

* Assume there are no “typical” bugs in the software
— No buffer overflow bugs
— No format string vulnerabilities
— Good choice of randomness
— Good design

* The software may still be vulnerable to timing
attacks

— Software exhibits input-dependent timings

* Complex and hard to fully protect against

4/15/19 CSE 484 [CSE M 584 - Spring 2019 14

Other Examples

* Plenty of other examples of timings attacks

— Timing cache misses

* Extract cryptographic keys...
* Recent Spectre/Meltdown attacks

* Also many other side channels

— Power analysis

— Other sensors
* Example: Accelerometer to extract phone passcode

4/15/19 CSE 484 [CSE M 584 - Spring 2019

15

Software Security:
So what do we do?

4/15/19 CSE 484 [CSE M 584 - Spring 2019

Fuzz Testing

* Generate “random” inputs to program

— Sometimes conforming to input structures (file
formats, etc.)

* Seeif program crashes
— If crashes, found a bug
— Bug may be exploitable

* Surprisingly effective
* Now standard part of development lifecycle

4/15/19 CSE 484 [CSE M 584 - Spring 2019 17

General Principles

* Checkinputs

4/15/19 CSE 484 [CSE M 584 - Spring 2019

Shellshock

* Checkinputs: not just to prevent buffer overflows
* Example: Shellshock (September 2014)

— Vulnerable servers processed input from web requests

— Passed (user-provided) environment variables (like user
agent, cookies...) to CGl scripts

— Maliciously crafted environment variables exploited a
bug in bash to execute arbitrary code

env x='() { :,;}; echo Vulnerable'
bash -c¢ "echo Real Command"

4/15/19 CSE 484 [CSE M 584 - Spring 2019 19

General Principles

* Checkinputs

* Check all return values

* Least privilege

 Securely clear memory (passwords, keys, etc.)
* Failsafe defaults

* Defense in depth
— Also: prevent, detect, respond

NOT: security through obscurity

4/15/19 CSE 484 [CSE M 584 - Spring 2019

General Principles

* Reduce size of trusted computing base (TCB)
* Simplicity, modularity
— But: Be careful at interface boundaries!
* Minimize attack surface
* Use vetted component
* Security by design
— But: tension between security and other goals

* Open design? Open source? Closed source?

— Different perspectives

4/15/19 CSE 484 [CSE M 584 - Spring 2019

21

Does Open Source Help?

* Different perspectives...

* Happy example:

— Linux kernel backdoor attempt thwarted (2003)
(http://www.freedom-to-tinker.com/2p=472)

* Sad example:

— Heartbleed (2014)

* Vulnerability in OpenSSL that allowed
attackers to read arbitrary memory from
vulnerable servers (including private keys)

4/15/19 CSE 484 [CSE M 584 - Spring 2019

22

http://xkcd.com/1354/

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (b LETTERS).

)

ser Meg wants these 6 letters: POTATO.

O
O
o

-

4/15/19 CSE 484 [CSE M 584 - Spring 2019

http://xkcd.com/1354/

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

ese 4 letters: BIRD.

1
f

4/15/19 CSE 484 [CSE M 584 - Spring 2019 2

http://xkcd.com/1354/

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "HAT™ (500 LETTERS),

/

Meg wants these 500 letters: HAT.

N HAT. Lucas requests the "missed conne
ctions” page. Eve (administrator) wan
ts to set server’s master key to "148
35038534, Isabel wants pages about "
gnakes but not too long". User Karen
wants to change account password to a1

4/15/19 CSE 484 [CSE M 584 - Spring 2019

Vulnerability Analysis and Disclosure

* What do you do if you’ve found a security
problem in a real system?
* Say
— A commercial website?
— UW grade database?
— Boeing 787?
— TSA procedures?

4/15/19 CSE 484 [CSE M 584 - Spring 2019 26

