
CSE 484 / CSE M 584: Computer Security and Privacy

Mobile Platform Security

Spring 2019

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

• Lab #2 due today
• No class Monday (Memorial Day)
• Lab #3 out by early next week, due June 7
– Tip: Read the entire lab description first

5/24/19 CSE 484 / CSE M 584 - Spring 2019 2

Roadmap

• Mobile malware
• Mobile platforms vs. traditional platforms
• Deep dive into Android

5/24/19 CSE 484 / CSE M 584 - Spring 2019 3

Mobile Malware: Threat Modeling

Q1: How might malware authors get malware
onto phones?

Q2: What are some goals that mobile device
malware authors might have, or technical
attacks they might attempt? How does this
different from desktop settings?

5/24/19 CSE 484 / CSE M 584 - Spring 2019 4

Smartphone (In)Security

Users accidentally install malicious applications.

5/24/19 5CSE 484 / CSE M 584 - Spring 2019

Smartphone (In)Security

Even legitimate applications exhibit questionable behavior.

5/24/19 6

Hornyack et al.: 43 of 110 Android
applications sent location or phone ID to
third-party advertising/analytics servers.

CSE 484 / CSE M 584 - Spring 2019

Mobile Malware Attack Vectors

• Unique to phones:
– Premium SMS messages
– Identify location
– Record phone calls
– Log SMS

• Similar to desktop/PCs:
– Connects to botmasters
– Steal data
– Phishing
– Malvertising

5/24/19 CSE 484 / CSE M 584 - Spring 2019 7

Malware in the Wild

[Zhou et al.]

Android malware grew quickly!
Today: millions of samples.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 8

Mobile Malware Examples

• DroidDream (Android)
– Over 58 apps uploaded to Google app market

– Conducts data theft; send credentials to attackers

• Zitmo (Symbian,BlackBerry,Windows,Android)
– Poses as mobile banking application

– Captures info from SMS – steal banking 2nd factors

– Works with Zeus botnet

• Ikee (iOS)
– Worm capabilities (targeted default ssh password)

– Worked only on jailbroken phones with ssh installed

5/24/19 CSE 484 / CSE M 584 - Spring 2019 9

Mobile Malware Examples
“ikee is never going to give you up”

5/24/19 CSE 484 / CSE M 584 - Spring 2019 10

Why All These Problems?

Not because smartphone OS designers don’t
care about security…

5/24/19 CSE 484 / CSE M 584 - Spring 2019 11

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 12

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 13

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less)

trusted.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 14

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Applications are isolated
– Each runs in a separate execution context
– No default access to file system, devices, etc.
– Different than traditional OSes where multiple

applications run with the same user permissions!

• App Store: approval process for applications
– Market: Vendor controlled/Open
– App signing: Vendor-issued/self-signed
– User approval of permissions

5/24/19 CSE 484 / CSE M 584 - Spring 2019 15

More Details: Android

• Based on Linux
• Application sandboxes
– Applications run as

separate UIDs, in
separate processes.

– Memory corruption
errors only lead to
arbitrary code execution in the context of the particular
application, not complete system compromise!

– (Can still escape sandbox – but must compromise Linux
kernel to do so.) ß allows rooting

5/24/19 CSE 484 / CSE M 584 - Spring 2019 16

[Enck et al.]

Since 5.0: ART (Android runtime)
replaces Dalvik VM to run apps natively

Rooting and Jailbreaking

• Allows user to run applications with root privileges
– e.g., modify/delete system files, app management, CPU

management, network management, etc.

• Done by exploiting vulnerability in firmware to
install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
– Doesn’t allow “side-loading” apps, etc.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 17

Challenges with Isolated Apps

So mobile platforms isolate applications for
security, but…

1. Permissions: How can applications access
sensitive resources?

2. Communication: How can applications
communicate with each other?

5/24/19 CSE 484 / CSE M 584 - Spring 2019 18

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent
such attacks by limiting applications’ access to:
– System Resources (clipboard, file system).
– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant
permissions to applications?

5/24/19 CSE 484 / CSE M 584 - Spring 2019 19

State of the Art
Prompts (time-of-use)

5/24/19 CSE 484 / CSE M 584 - Spring 2019 20

Manifests (install-time)

State of the Art
Prompts (time-of-use) Manifests (install-time)

Disruptive, which leads to
prompt-fatigue.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 21

State of the Art
Prompts (time-of-use) Manifests (install-time)

Out of context; not
understood by users.

In practice, both are overly permissive:
Once granted permissions, apps can misuse them.

Disruptive, which leads to
prompt-fatigue.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 22

Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 23

Do users understand the warnings?

Are Manifests Usable?
[Felt et al.]

5/24/19 CSE 484 / CSE M 584 - Spring 2019 24

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?
[Felt et al.]

5/24/19 CSE 484 / CSE M 584 - Spring 2019 25

Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).
• Big change! Now app developers need to check for

permissions or catch exceptions.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 26

(2) Inter-Process Communication

• Primary mechanism in Android: Intents
– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name
• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW)
and/or data (URI and MIME type)
• Apps specify Intent Filters for their components.

5/24/19 CSE 484 / CSE M 584 - Spring 2019 27

Eavesdropping and Spoofing

• Buggy apps might accidentally:
– Expose their component-to-component

messages publicly à eavesdropping
– Act on unauthorized messages they receive
à spoofing

5/24/19 CSE 484 / CSE M 584 - Spring 2019 28

[Chin et al.]

Permission Re-Delegation

• An application without a permission gains
additional privileges through another application.

• Demo video
• Settings application is

deputy: has permissions,
and accidentally exposes
APIs that use those
permissions.

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

5/24/19 CSE 484 / CSE M 584 - Spring 2019 29

Aside: Incomplete Isolation

5/24/19 CSE 484 / CSE M 584 - Spring 2019 30

Embedded UIs and libraries always run with the host
application’s permissions! (No same-origin policy here…)

[Shekhar et al.]

Like us on
Facebook!

Ad from
ad library

Social button
from Facebook
library

Map from
Google
library

More on Android…

5/24/19 CSE 484 / CSE M 584 - Spring 2019 31

Android Application Signing

• Apps are signed
– Often with self-signed certificates
– Signed application certificate defines which user ID is

associated with which applications
– Different apps run under different UIDs

• Shared UID feature
– Shared Application Sandbox possible, where two or

more apps signed with same developer key can declare
a shared UID in their manifest

5/24/19 CSE 484 / CSE M 584 - Spring 2019 32

Shared UIDs

• App 1: Requests GPS / camera access
• App 2: Requests Network capabilities

• Generally:
– First app can’t exfiltrate information
– Second app can’t exfiltrate anything interesting

• With Shared UIDs (signed with same private key)
– Permissions are a superset of permissions for each app
– App 1 can now exfiltrate; App 2 can now access GPS /

camera

5/24/19 CSE 484 / CSE M 584 - Spring 2019 33

File Permissions

• Files written by one application cannot be
read by other applications
– Previously, this wasn’t true for files stored on the SD

card (world readable!) – Android cracked down on this

• It is possible to do full file system encryption
– Key = Password/PIN combined with salt, hashed

5/24/19 CSE 484 / CSE M 584 - Spring 2019 34

Memory Management

• Address Space Layout Randomization to
randomize addresses on stack

• Hardware-based No eXecute (NX) to prevent code
execution on stack/heap

• Stack guard derivative
• Some defenses against double free bugs (based on

OpenBSD’s dmalloc() function)
• etc.

[See http://source.android.com/tech/security/index.html]

5/24/19 CSE 484 / CSE M 584 - Spring 2019 35

Android Fragmentation

• Many different variants of
Android (unlike iOS)
– Motorola, HTC, Samsung, …

• Less secure ecosystem
– Inconsistent or incorrect

implementations
– Slow to propagate kernel

updates and new versions

[https://developer.android.com/about/dashbo
ards/index.html]

5/24/19 CSE 484 / CSE M 584 - Spring 2019 36

What about iOS?

• Apps are sandboxed
• Encrypted user data

– See recent news…

• App Store review process is
(maybe) stricter
– But not infallible: e.g., see

Wang et al. “Jekyll on iOS:
When Benign Apps Become
Evil” (USENIX Security 2013)

5/24/19 CSE 484 / CSE M 584 - Spring 2019 37

• No “sideloading” apps
– Unless you jailbreak

