
Spring 2019

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography
[Finish Asymmetric Cryptography]

Admin

• Lab 1 done J

• Homework 2 (crypto) out
– Get started now; shouldn’t need the whole time

• Lab 2 (web security) out next week
– Stay tuned for group signup instructions

5/1/19 CSE 484 / CSE M 584 - Spring 2019 2

More on Diffie-Hellman
Key Exchange

• Important Note:
– We have discussed discrete logs modulo integers

– Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are

“groups”) but have better security and performance (size)
properties

5/1/19 CSE 484 / CSE M 584 - Spring 2019 3

5/1/19 CSE 484 / CSE M 584 - Spring 2019 4

Public Key Encryption

5/1/19 CSE 484 / CSE M 584 - Spring 2019 5

Requirements for Public Key Encryption

• Key generation: computationally easy to generate
a pair (public key PK, private key SK)

• Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
– Infeasible to learn anything about M from C without SK

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

5/1/19 CSE 484 / CSE M 584 - Spring 2019 6

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of
integers in the [1,n] interval that are relatively prime to n
– Two numbers are relatively prime if their greatest

common divisor (gcd) is 1

– Easy to compute for primes: ϕ(p) = p-1

– Note that ϕ(ab) = ϕ(a) ϕ(b)

5/1/19 CSE 484 / CSE M 584 - Spring 2019 7

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 1024 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n
• Decryption of c: cd mod n = (me)d mod n = m

5/1/19 CSE 484 / CSE M 584 - Spring 2019 8

How to
compute?

Why RSA Decryption Works (FYI)

e�d=1 mod ϕ(n), thus e�d=1+k�ϕ(n) for some k

Let m be any integer in Zn* (not all of Zn)
cd mod n = (me)d mod n = m1+k�ϕ(n) mod n

= (m mod n) * (mk�ϕ(n) mod n)

Recall: Euler’s theorem: if a�Zn*, then aϕ(n)=1 mod n

cd mod n = (m mod n) * (1 mod n)
= m mod n

Proof omitted: True for all m in Zn, not just m in Zn*

5/1/19 CSE 484 / CSE M 584 - Spring 2019 9

Why RSA Decryption Works (FYI)
• Decryption of c: cd mod n = (me mod n)d mod n = (me)d mod n = m
• Recall n=pq and ϕ(n)=(p-1)(q-1) and ed ≡ 1 mod ϕ(n)

• Chinese Remainder Theorem: To show med mod n ≡ m mod n,
sufficient to show:
– med mod p ≡ m mod p
– med mod q ≡ m mod q

• If m ≡ 0 mod p à med ≡ 0 mod p

• Else med = med-1m = mk(q-1)(p-1)m =mh(p-1) m for some k, and h=k(q-1).
Why? Recall how d was chosen and the definition of mod.

• Fermat Little Theorem: m(p-1)h m ≡ 1hm mod p ≡ m mod p

5/1/19 CSE 484 / CSE M 584 - Spring 2019 10

Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that
gcd(e, ϕ(n))=1, find m such that me=c mod n
– In other words, recover m from ciphertext c and public key (n,e) by

taking eth root of c modulo n

– There is no known efficient algorithm for doing this

• Factoring problem: given positive integer n, find
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing
factors means you can compute d = inverse of e mod (p-1)(q-1))
– It may be possible to break RSA without factoring n -- but if it is, we

don’t know how

5/1/19 CSE 484 / CSE M 584 - Spring 2019 11

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an
integer less than n

• Don’t use RSA directly for privacy – output is
deterministic! Need to pre-process input somehow

• Plain RSA also does not provide integrity
– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M,
encrypt M�G(r) ; r�H(M�G(r))
– r is random and fresh, G and H are hash functions

5/1/19 CSE 484 / CSE M 584 - Spring 2019 12

Digital Signatures: Basic Idea

5/1/19 CSE 484 / CSE M 584 - Spring 2019 13

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

– Signing & decryption are same underlying operation in RSA
– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)
– Anyone who knows n and e (public key) can verify signatures

produced with d (private key)

• In practice, also need padding & hashing
– Standard padding/hashing schemes exist for RSA signatures

5/1/19 CSE 484 / CSE M 584 - Spring 2019 14

DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x

• Security of DSS requires hardness of discrete log
– If could solve discrete logarithm problem, would extract

x (private key) from gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers;
significant advantages to using elliptic curve groups
instead.

5/1/19 CSE 484 / CSE M 584 - Spring 2019 15

Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) à modes: EBC, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)
• Goal: Integrity
– MACs, often using hash functions (e.g, SHA-256)

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)

5/1/19 CSE 484 / CSE M 584 - Spring 2019 16

Authenticity of Public Keys

5/1/19 CSE 484 / CSE M 584 - Spring 2019 17

?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private key

Alice
Bob

public key

Threat: Man-In-The-Middle (MITM)

5/1/19 CSE 484 / CSE M 584 - Spring 2019 18

Google.com

Distribution of Public Keys

• Public announcement or public directory
– Risks: forgery and tampering

• Public-key certificate
– Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)

• Common approach: certificate authority (CA)
– Single agency responsible for certifying public keys
– After generating a private/public key pair, user proves

his identity and knowledge of the private key to obtain
CA’s certificate for the public key (offline)

– Every computer is pre-configured with CA’s public key

5/1/19 CSE 484 / CSE M 584 - Spring 2019 19

Trusted(?) Certificate Authorities

5/1/19 CSE 484 / CSE M 584 - Spring 2019 20

Hierarchical Approach

• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
– Everybody must know

the root’s public key

– Instead of single cert,
use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),

sigAnotherCA(“Alice”, PKA)

– What happens if root authority is ever compromised?

5/1/19 CSE 484 / CSE M 584 - Spring 2019 21

