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CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography
[Finish Asymmetric Cryptography]



Admin

• Lab 1 done J

• Homework 2 (crypto) out
– Get started now; shouldn’t need the whole time

• Lab 2 (web security) out next week
– Stay tuned for group signup instructions
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More on Diffie-Hellman 
Key Exchange

• Important Note: 
– We have discussed discrete logs modulo integers

– Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are 

“groups”) but have better security and performance (size) 
properties

5/1/19 CSE 484 / CSE M 584 - Spring 2019 3



5/1/19 CSE 484 / CSE M 584 - Spring 2019 4



Public Key Encryption
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate 
a pair (public key PK, private key SK)

• Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
– Infeasible to learn anything about M from C without SK

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of 
integers in the [1,n] interval that are relatively prime to n
– Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1

– Easy to compute for primes: ϕ(p) = p-1

– Note that ϕ(ab) = ϕ(a) ϕ(b)
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RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 1024 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n
• Decryption of c:   cd mod n = (me)d mod n = m
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Why RSA Decryption Works (FYI)

e�d=1 mod ϕ(n), thus e�d=1+k�ϕ(n) for some k

Let m be any integer in Zn* (not all of Zn)
cd mod n = (me)d mod n = m1+k�ϕ(n) mod n

= (m mod n) * (mk�ϕ(n) mod n)

Recall:  Euler’s theorem: if a�Zn*, then aϕ(n)=1 mod n

cd mod n = (m mod n) * (1 mod n)
= m mod n

Proof omitted:  True for all m in Zn, not just m in Zn*
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Why RSA Decryption Works (FYI)
• Decryption of c: cd mod n = (me mod n)d mod n = (me)d mod n = m
• Recall n=pq and ϕ(n)=(p-1)(q-1) and ed ≡ 1 mod ϕ(n)

• Chinese Remainder Theorem: To show med mod n ≡ m mod n, 
sufficient to show:
– med mod p ≡ m mod p
– med mod q ≡ m mod q

• If m ≡ 0 mod p à med ≡ 0 mod p 

• Else med = med-1m = mk(q-1)(p-1)m =mh(p-1) m for some k, and h=k(q-1). 
Why? Recall how d was chosen and the definition of mod.

• Fermat Little Theorem: m(p-1)h m ≡ 1hm mod p ≡ m mod p
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Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that            
gcd(e, ϕ(n))=1, find m such that me=c mod n
– In other words, recover m from ciphertext c and public key (n,e) by 

taking eth root of c modulo n

– There is no known efficient algorithm for doing this

• Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing 
factors means you can compute d = inverse of e mod (p-1)(q-1))
– It may be possible to break RSA without factoring n -- but if it is, we 

don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an 
integer less than n

• Don’t use RSA directly for privacy – output is 
deterministic! Need to pre-process input somehow

• Plain RSA also does not provide integrity
– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, 
encrypt M�G(r) ; r�H(M�G(r))
– r is random and fresh, G and H are hash functions
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Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob



RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m:  s = md mod n

– Signing & decryption are same underlying operation in RSA
– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:   
verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)
– Anyone who knows n and e (public key) can verify signatures 

produced with d (private key)

• In practice, also need padding & hashing
– Standard padding/hashing schemes exist for RSA signatures
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DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x

• Security of DSS requires hardness of discrete log
– If could solve discrete logarithm problem, would extract 

x (private key) from gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; 
significant advantages to using elliptic curve groups 
instead.
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Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) à modes: EBC, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)
• Goal: Integrity
– MACs, often using hash functions (e.g, SHA-256)   

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)
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Authenticity of Public Keys
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?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private key

Alice
Bob

public key



Threat: Man-In-The-Middle (MITM)
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Distribution of Public Keys

• Public announcement or public directory
– Risks: forgery and tampering

• Public-key certificate
– Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)

• Common approach: certificate authority (CA)
– Single agency responsible for certifying public keys
– After generating a private/public key pair, user proves 

his identity and knowledge of the private key to obtain 
CA’s certificate for the public key (offline)

– Every computer is pre-configured with CA’s public key
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Trusted(?) Certificate Authorities

5/1/19 CSE 484 / CSE M 584 - Spring 2019 20



Hierarchical Approach

• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
– Everybody must know 

the root’s public key

– Instead of single cert,                                                                  
use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA), 

sigAnotherCA(“Alice”, PKA)

– What happens if root authority is ever compromised?
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