
Spring 2019

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography
[Finish Hash Functions;

Start Asymmetric Cryptography]

Admin

• Lab 1 due Monday
• Coming up
– Monday: Adversarial ML (Ivan Evtimov)
– Today/Wednesday: Finish crypto
– Friday: start web security!

4/25/19 CSE 484 / CSE M 584 - Spring 2019 2

Common Hash Functions

• MD5 – Don’t Use!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm)
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3: standard released by NIST in August 2015

4/25/19 CSE 484 / CSE M 584 - Spring 2019 3

SHA-1 Broken in Practice (2017)

4/25/19 CSE 484 / CSE M 584 - Spring 2019 4

https://shattered.io

Recall: Achieving Integrity

4/25/19 CSE 484 / CSE M 584 - Spring 2019 5

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEYKEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)
– Used in SSL/TLS, mandatory for IPsec

• Why not encryption?
– Hashing is faster than block ciphers in software
– Can easily replace one hash function with another
– There used to be US export restrictions on encryption

4/25/19 CSE 484 / CSE M 584 - Spring 2019 6

Authenticated Encryption

• What if we want both privacy and integrity?
• Natural approach: combine encryption scheme and a MAC.
• But be careful!

– Obvious approach: Encrypt-and-MAC
– Problem: MAC is deterministic! same plaintext à same MAC

4/25/19 CSE 484 / CSE M 584 - Spring 2019 7

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

Authenticated Encryption

• Instead:
Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

4/25/19 CSE 484 / CSE M 584 - Spring 2019 8

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Stepping Back:
Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret

key sk.

4/25/19 CSE 484 / CSE M 584 - Spring 2019 9

Symmetric Setting

4/25/19 CSE 484 / CSE M 584 - Spring 2019 10

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a
shared random string K, called the key.

Asymmetric Setting

4/25/19 CSE 484 / CSE M 584 - Spring 2019 11

Each party creates a public key pk and a secret key sk.

pkB pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public Key Crypto: Basic Problem

4/25/19 CSE 484 / CSE M 584 - Spring 2019 12

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob

Ignore for now: How do
we know it’s REALLY
Bob’s??

Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt
– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)

4/25/19 CSE 484 / CSE M 584 - Spring 2019 13

Session Key Establishment

4/25/19 CSE 484 / CSE M 584 14

Modular Arithmetic

4/25/19 CSE 484 / CSE M 584 - Spring 2019 15

• Refresher in section yesterday
• Given g and prime p, compute:

g1 mod p, g100 mod p, … g100 mod p
– For p=11, g=10

• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …
• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …
• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)
• g=7 is a “generator” of Z11*

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; ∀a ∈ Zp* ∃i such that a=gi mod p
• Modular arithmetic: numbers “wrap around” after they reach p

4/25/19 CSE 484 / CSE M 584 - Spring 2019 16

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:
given gx mod p, it’s hard to extract x
– There is no known efficient algorithm for doing this
– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy
• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between
gxy mod p and gr mod p where r is random

4/25/19 CSE 484 / CSE M 584 - Spring 2019 17

Diffie-Hellman: Conceptually

4/25/19 CSE 484 / CSE M 584 - Spring 2019 18

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

Properties of Diffie-Hellman

• Assuming DDH problem is hard (depends on choice of
parameters!), Diffie-Hellman protocol is a secure key
establishment protocol against passive attackers
– Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*

– Eavesdropper can’t tell the difference between the established key
and a random value

– Often hash gxy mod p, and use the hash as the key
– Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide
authentication
– Party in the middle attack (often called “man in the middle attack”)

4/25/19 CSE 484 / CSE M 584 19

More on Diffie-Hellman
Key Exchange

• Important Note:
– We have discussed discrete logs modulo integers
– Significant advantages in using elliptic curve groups

• Groups with some similar mathematical properties (i.e., are “groups”)
but have better security and performance (size) properties

4/25/19 CSE 484 / CSE M 584 - Fall 2017 20

4/25/19 CSE 484 / CSE M 584 - Spring 2019 21

Public Key Encryption

4/25/19 CSE 484 / CSE M 584 22

Requirements for Public Key Encryption

• Key generation: computationally easy to generate
a pair (public key PK, private key SK)

• Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
– Infeasible to learn anything about M from C without SK
– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

4/25/19 CSE 484 / CSE M 584 - Spring 2019 23

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of
integers in the [1,n] interval that are relatively prime to n
– Two numbers are relatively prime if their greatest

common divisor (gcd) is 1
– Easy to compute for primes: ϕ(p) = p-1
– Note that ϕ(ab) = ϕ(a) ϕ(b)

4/25/19 CSE 484 / CSE M 584 - Spring 2019 24

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 1024 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n); private key = (d,n)
• Encryption of m: c = me mod n
• Decryption of c: cd mod n = (me)d mod n = m

4/25/19 CSE 484 / CSE M 584 - Spring 2019 25

How to
compute?

Why RSA Decryption Works (FYI)

e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Let m be any integer in Zn* (not all of Zn)
cd mod n = (me)d mod n = m1+k⋅ϕ(n) mod n

= (m mod n) * (mk⋅ϕ(n) mod n)

Recall: Euler’s theorem: if a∈Zn*, then aϕ(n)=1 mod n

cd mod n = (m mod n) * (1 mod n)
= m mod n

Proof omitted: True for all m in Zn, not just m in Zn*

4/25/19 CSE 484 / CSE M 584 - Spring 2015 26

Why RSA Decryption Works (FYI)
• Decryption of c: cd mod n = (me mod n)d mod n = (me)d mod n = m
• Recall n=pq and ϕ(n)=(p-1)(q-1) and ed ≡ 1 mod ϕ(n)

• Chinese Remainder Theorem: To show med mod n ≡ m mod n,
sufficient to show:
– med mod p ≡ m mod p
– med mod q ≡ m mod q

• If m ≡ 0 mod p à med ≡ 0 mod p

• Else med = med-1m = mk(q-1)(p-1)m =mh(p-1) m for some k, and h=k(q-1).
Why? Recall how d was chosen and the definition of mod.

• Fermat Little Theorem: m(p-1)h m ≡ 1hm mod p ≡ m mod p

4/25/19 CSE 484 / CSE M 584 27

Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that
gcd(e, ϕ(n))=1, find m such that me=c mod n
– In other words, recover m from ciphertext c and public key (n,e) by

taking eth root of c modulo n
– There is no known efficient algorithm for doing this

• Factoring problem: given positive integer n, find
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing
factors means you can compute d = inverse of e mod (p-1)(q-1))
– It may be possible to break RSA without factoring n -- but if it is, we

don’t know how

4/25/19 CSE 484 / CSE M 584 - Spring 2019 28

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an
integer less than n

• Don’t use RSA directly for privacy – output is
deterministic! Need to pre-process input somehow

• Plain RSA also does not provide integrity
– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M,
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
– r is random and fresh, G and H are hash functions

4/25/19 CSE 484 / CSE M 584 - Spring 2019 29

Digital Signatures: Basic Idea

4/25/19 CSE 484 / CSE M 584 - Spring 2019 30

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

– Signing & decryption are same underlying operation in RSA
– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)
– Anyone who knows n and e (public key) can verify signatures

produced with d (private key)
• In practice, also need padding & hashing

– Standard padding/hashing schemes exist for RSA signatures

4/25/19 CSE 484 / CSE M 584 - Spring 2019 31

DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x
• Security of DSS requires hardness of discrete log
– If could solve discrete logarithm problem, would extract

x (private key) from gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers;
significant advantages to using elliptic curve groups
instead.

4/25/19 CSE 484 / CSE M 584 - Spring 2019 32

Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) à modes: EBC, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)
• Goal: Integrity
– MACs, often using hash functions (e.g, MD5, SHA-256)

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)

4/25/19 CSE 484 / CSE M 584 - Spring 2019 33

