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CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography
[Finish Hash Functions; 

Start Asymmetric Cryptography]



Admin

• Lab 1 due Monday
• Coming up
– Monday: Adversarial ML (Ivan Evtimov)
– Today/Wednesday: Finish crypto
– Friday: start web security!
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Common Hash Functions

• MD5 – Don’t Use!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm)
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3:  standard released by NIST in August 2015
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SHA-1 Broken in Practice (2017)
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https://shattered.io



Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEYKEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)
– Used in SSL/TLS, mandatory for IPsec

• Why not encryption?
– Hashing is faster than block ciphers in software
– Can easily replace one hash function with another
– There used to be US export restrictions on encryption
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Authenticated Encryption

• What if we want both privacy and integrity?
• Natural approach: combine encryption scheme and a MAC.
• But be careful!

– Obvious approach: Encrypt-and-MAC
– Problem: MAC is deterministic! same plaintext à same MAC
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Authenticated Encryption

• Instead:           
Encrypt then MAC.

• (Not as good:                    
MAC-then-Encrypt)
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Encrypt-then-MAC
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Stepping Back: 
Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a 

shared random string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret 

key sk.  
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Symmetric Setting
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Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a 
shared random string K, called the key.



Asymmetric Setting
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Each party creates a public key pk and a secret key sk.

pkB pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary



Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob

Ignore for now: How do 
we know it’s REALLY 
Bob’s??



Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt
– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)
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Session Key Establishment
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Modular Arithmetic
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• Refresher in section yesterday
• Given g and prime p, compute:                                                              

g1 mod p, g100 mod p, … g100 mod p
– For p=11, g=10

• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …
• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …
• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)
• g=7 is a “generator” of Z11*



Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; ∀a ∈ Zp* ∃i such that a=gi mod p
• Modular arithmetic: numbers “wrap around” after they reach p
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Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 
given gx mod p, it’s hard to extract x
– There is no known efficient algorithm for doing this
– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy
• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between      
gxy mod p and gr mod p where r is random

4/25/19 CSE 484 / CSE M 584 - Spring 2019 17



Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Properties of Diffie-Hellman

• Assuming DDH problem is hard (depends on choice of 
parameters!), Diffie-Hellman protocol is a secure key 
establishment protocol against passive attackers
– Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*

– Eavesdropper can’t tell the difference between the established key 
and a random value

– Often hash gxy mod p, and use the hash as the key
– Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide 
authentication
– Party in the middle attack (often called “man in the middle attack”)
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More on Diffie-Hellman 
Key Exchange

• Important Note: 
– We have discussed discrete logs modulo integers
– Significant advantages in using elliptic curve groups

• Groups with some similar mathematical properties (i.e., are “groups”) 
but have better security and performance (size) properties
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Public Key Encryption
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate 
a pair (public key PK, private key SK)

• Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
– Infeasible to learn anything about M from C without SK
– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of 
integers in the [1,n] interval that are relatively prime to n
– Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1
– Easy to compute for primes: ϕ(p) = p-1
– Note that ϕ(ab) = ϕ(a) ϕ(b)
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RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 1024 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n);  private key = (d,n)
• Encryption of m:  c = me mod n
• Decryption of c:   cd mod n = (me)d mod n = m
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How to 
compute?



Why RSA Decryption Works (FYI)

e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Let m be any integer in Zn* (not all of Zn)
cd mod n = (me)d mod n = m1+k⋅ϕ(n) mod n

= (m mod n) * (mk⋅ϕ(n) mod n)

Recall:  Euler’s theorem: if a∈Zn*, then aϕ(n)=1 mod n

cd mod n = (m mod n) * (1 mod n)
= m mod n

Proof omitted:  True for all m in Zn, not just m in Zn*
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Why RSA Decryption Works (FYI)
• Decryption of c: cd mod n = (me mod n)d mod n = (me)d mod n = m
• Recall n=pq and ϕ(n)=(p-1)(q-1) and ed ≡ 1 mod ϕ(n)

• Chinese Remainder Theorem: To show med mod n ≡ m mod n, 
sufficient to show:
– med mod p ≡ m mod p
– med mod q ≡ m mod q

• If m ≡ 0 mod p à med ≡ 0 mod p 

• Else med = med-1m = mk(q-1)(p-1)m =mh(p-1) m for some k, and h=k(q-1). 
Why? Recall how d was chosen and the definition of mod.

• Fermat Little Theorem: m(p-1)h m ≡ 1hm mod p ≡ m mod p
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Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that            
gcd(e, ϕ(n))=1, find m such that me=c mod n
– In other words, recover m from ciphertext c and public key (n,e) by 

taking eth root of c modulo n
– There is no known efficient algorithm for doing this

• Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing 
factors means you can compute d = inverse of e mod (p-1)(q-1))
– It may be possible to break RSA without factoring n -- but if it is, we 

don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an 
integer less than n

• Don’t use RSA directly for privacy – output is 
deterministic! Need to pre-process input somehow

• Plain RSA also does not provide integrity
– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
– r is random and fresh, G and H are hash functions
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Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob



RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m:  s = md mod n

– Signing & decryption are same underlying operation in RSA
– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:   
verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)
– Anyone who knows n and e (public key) can verify signatures 

produced with d (private key)
• In practice, also need padding & hashing

– Standard padding/hashing schemes exist for RSA signatures
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DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x
• Security of DSS requires hardness of discrete log
– If could solve discrete logarithm problem, would extract 

x (private key) from gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; 
significant advantages to using elliptic curve groups 
instead.
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Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) à modes: EBC, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)
• Goal: Integrity
– MACs, often using hash functions (e.g, MD5, SHA-256)   

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)
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