
CSE 484 / 584M

Lab 1: Buffer Overflows

Checkpoint (Sploits 1-3): 5pm on Friday, April 19
Final Due:​ ​5pm on Monday, April 29
Signup Form: [​link​]

Goal
● The goal of this assignment is to gain hands-on experience with the effects of buffer overflow

bugs. All of the work must be done on the machine ​codered.cs.washington.edu ​ (see
instructions below for connecting).

● You are given the source code for seven exploitable programs, whose binaries are stored in the
“bin” directory (/bin/target1, ... , /bin/target7). Each target program [i] is installed as setuid
hax0red[i]. Your goal is to write seven exploit programs (sploit1, ..., sploit7). Program sploit[i]
will execute program /bin/target[i], giving it certain input that should result in a shell run with the
same permissions as user hax0red[i]. If target[i] had setuid root then sploit[i] would result in a
root shell. We don't do that in this case for obvious security reasons, so instead you get the
permissions of the hax0red[i] user.

● The skeletons for sploits 1 through 7 are provided in the ~/sploits/ directory. Note that the exploit
programs are very short, so there is no need to write a lot of code here.

● Sploits 1-7 are required. Sploit 8 is extra credit.

The Environment
● You will test your exploit programs on a remote machine running Debian Linux hosted at the

domain ​codered.cs.washington.edu
● To connect to the machine, each group must first respond to the Lab 1 Google Form that was sent

to the course mailing list. Please form groups of up to 3 people and only respond once per group
with the following information:

○ 1) A username for your group
○ 2) The UW NetIDs of your group members.
○ 3) RSA ​public​ key (from a key pair that you control).

● Expect some delay between sending the information and account creation, so please answer the
form early and plan accordingly. Please double check that your answers are free of typos to
minimize any delays. Also, do ​NOT​ send the private key (that should remain only on trusted
machines).

https://docs.google.com/forms/d/1PrwbW_a4MweiwdBNouSvL5weNI5XNMK5U8DtUG6-z6A/edit

Here is an example of a public key:

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDTKPi45wxeSezgO5JmG8HiuAQH6R3kqQTe
OeTbntWxliiClrahwlnkv26PAIaQKNdRbVH1fgX9kyUfsdj5JAvvNFuxpfY+GVVZKFI5M3Cuz
AynIymBjqnDn6Auq+tuSl8O4osb/0L9zDeQzOxQ+ed6iVDuPPkBLoX+XyuNUyYKV46xCIH
OS6ao+6CkZXhp4VTz4LUvb1s8DIUcaD8/bbigxxZH3eKRQH2arV9AqP1LoC2T3azLTkHvCrc
ImpjVW/pxf5+nbkRb1SSkkHFvFPdd+0us12yGOp1xBbo2kuKWSdcBgd4eiGHQsO+VWi23R9
2bcOh/DxRZumdMyaDBMGY/ user@localhost

Generating Key Pairs
Linux/Mac:

To generate the key-pair run the following (it is strongly suggested to use a passphrase):

ssh-keygen -t rsa -f <key_name>

To use ssh (after we have created your account):

ssh -i <path_to_private_key> <username>@codered.cs.washington.edu

Windows:

To generate the key-pair use PuTTYgen. It comes installed with PuTTY.

1) Open PuTTYgen
2) Select the type of key as SSH-2 RSA
3) Click Generate and move the mouse around to generate entropy
4) (Optional but recommended) Enter a Passphrase + Confirmation of Passphrase
5) Click save the private key
6) Copy the text of the public key to post/email from the box at the top

To ssh (with PuTTY):

On the left side, select Connection->SSH->Auth. In this pane, browse to your private key, and then login
as usual. You may want to save the session for a quicker login next time. (Note, if you generated your ssh
key pairs using Linux and you want to use it in windows, you will need to use PuTTYgen to convert it
from .pem to .ppk before using it)

The Targets
● The targets are stored in /bin and their corresponding sources in ~/sources/. You are free to study

the source code of each target. ​DO NOT​ recompile the targets!
● Your exploits should assume that the compiled target programs are installed in /bin. Do not move

the targets.
● Each target[i] is setuid hax0red[i], which means that they run as hax0red[i] regardless of who

runs it. The one exception is when they're run under a debugger. Allowing users to debug a setuid
executable is a security flaw, so setuid programs temporarily lose their setuid-ness under a
debugger. This means that you can only get a hax0red[i] shell when your sploits are ran outside of
gdb. However, if you get a user shell inside gdb, you should get a hax0red[i] shell outside of gdb.

The Exploits
The ~/sploits/ directory contains the source for the exploits which you are to write, along with a Makefile
for building them. Also included is shellcode.h, which gives Aleph One's shellcode.

The Assignment
You are to write an exploit for each target #1-7. Each exploit, when run on the remote machine, should
yield a hax0red[i] shell (/bin/sh). To confirm this is working, run the command ​whoami ​ in the shell, and
you should see the hax0red[i] user.

Extra Credit
Target8 is extra credit! You can see that the source code is exactly the same as target0, except this time,
the stack is not executable. You might want to try a return2libc attack. Here’s a good tutorial for it
RET2LIBC​ (starting from page 52).

Hints
● Read Aleph One's ​"Smashing the Stack for Fun and Profit."​ Carefully! We also recommend

reading Chien and Szor's ​"Blended Attacks"​ paper. These readings will help you have a good
understanding of what happens to the stack, program counter, and relevant registers before and
after a function call, but you may wish to experiment as well. It will be helpful to have a solid
understanding of the basic buffer overflow exploits before reading the more advanced exploits.

● Read scut's ​"format strings"​ paper. You may also wish to read
http://seclists.org/bugtraq/2000/Sep/214​.

● gdb ​(or cgdb, which gives you a view of the source code you’re debugging; we also have
peda gdb installed, if that’s your thing, just add it to your .gdbinit with ​echo "source

/home/peda/peda.py" >> ~/.gdbinit​)​ is your best friend in this assignment,

http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf
http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/stack.txt
https://www.symantec.com/avcenter/reference/blended.attacks.pdf
http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/formatstrings.pdf
http://seclists.org/bugtraq/2000/Sep/214

particularly to understand what's going on. Specifically, note the "disassemble" and "stepi"
commands. You may find the 'x' command useful to examine memory (and the different ways
you can print the contents such as /a /i after x. If you use peda, telescope is a really useful
command. To check the informations stored on stack. In peda, if you lost the original nice
display, you can use context to tell it to reprint it.) The 'info register' command is helpful in
printing out the contents of registers such as ebp and esp. The 'info frame' command also tells you
useful information, such as where the return EIP is saved.

● A useful way to run gdb is to use the -e and -s command line flags; for example, the command
cgdb -e sploit3 -s /bin/target3 ​ ​-d ~/sources ​in the vm tells gdb to execute
sploit3, use the symbol file in target3, and the -d shows you the source code of the target as you
step through it. These flags let you trace the execution of the target3 after the sploit has forked off
the execve process. When running gdb using these command line flags, be sure to first issue
'catch exec' then 'run' the program before you set any breakpoints; the command 'run' naturally
breaks the execution at the first execve call before the target is actually exec-ed, so you can set
your breakpoints when gdb catches the execve. Note that if you try to set breakpoints before
entering the command 'run', you'll get a segmentation fault.

● If you wish, you can instrument your code with arbitrary assembly using the asm () pseudo
function.

● Make sure that your exploits work within the remote environment we provided.
● Start early!!!​ Theoretical knowledge of exploits does not readily translate into the ability to

write working exploits. Target1 is relatively simple and the other problems are quite a bit more
complicated.

● Find more FAQs answered here:
https://courses.cs.washington.edu/courses/cse484/19sp/assignments/lab1-faq.pdf

Warnings
Aleph One gives code that calculates addresses on the target's stack based on addresses on the exploit's
stack. Addresses on the exploit's stack can change based on how the exploit is executed (working
directory, arguments, environment, etc.); in our testing, we do not guarantee to execute your exploits as
bash does. ​You must therefore hard-code target stack locations in your exploits. ​You should ​not​ use a
function such as get_sp() in the exploits you hand in.

Deliverables
● You may work in groups of up to ​three​ people. Make sure your submission includes the name of

all your group members.
● In a bid to get you to start early, sploits 1-3 are due by ​5pm on April 19th​.
● Since we have access to your remote home directory, you won't need to submit any code.

However, to let us know when you're done, please submit a text file named
<netid member 1>_<netid member 2>_<netid member3>.txt

(make sure to use your UW netid, not your student number!) with the result of running

https://courses.cs.washington.edu/courses/cse484/19sp/assignments/lab1-faq.pdf

md5sum sploit[i].c ​ for all sploits in your sploits directory.
○ E.g., for sploit1.c, you would type ​md5sum sploit1.c ​ in your terminal, and copy

the entire line into the text file.
○ Please place one md5sum hash per line. For the checkpoint, you should submit three

hashes. For the final due date, submit all the hashes.
○ AFTER SUBMITTING THIS, DO NOT CHANGE YOUR CODE in your home

directory -- make copies if you'd like to experiment further. Otherwise, the md5 hashes
will not match when we check it. If you're concerned you might mess this up, you're
welcome to submit your code to the dropbox as well, as a backup. But submitting code is
not required.

● Turn in your text file online via the Canvas assignment.

Misc
● Please try to access the remote machine early and let us know if you have any problems!

Send us a reminder email if you don't have access within 24 hours of sending your public
key. But please do allow 24 hours :)

● You may wish to backup or write your code elsewhere. We suggest using SCP or SFTP to access
your files. For Windows, WinSCP is a great tool. SCP and SFTP run on top of SSH, so use your
SSH parameters (port, key, etc.) to connect.

● There's lots of online documentation for GDB. Here's one you might start with: ​GDB Notes
(formerly hosted at CMU)

● The "crash course in x86 and gdb" slides: ​section_lecture.pdf

Credits
This project was originally designed for Dan Boneh and John Mitchell's CS155 course at Stanford, and
was then also extended by Hovav Shacham at UCSD. Thanks Dan, John, and Hovav!

http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/gdbnotes.pdf
http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/gdbnotes.pdf
http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/section_lecture.pdf

