
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• Day Before Thanksgiving: Alternate Video Lesson
(e.g., use to support your final project)

• Final Project: Please see information online

• My “Office Hours”:
– This Wednesday, 11:30am, in CSE1 403, for group

discussion, then moves to CSE2 307

– Next Wednesday, 12:30pm, in CSE1 403, for group
discussion, then moves to CSE2 307

• Quiz Section This Week: Workshop / Extended Office
Hours

• Quiz Section Next Week: Try Target 5 in Advance

10/9/2019 CSE 484 / CSE M 584 – Autumn 2019 2

Announcements

• Format String Vulnerabilities, Other Exploits,
and Course Structure: Don’t worry if lectures
alone leave open questions

• Recall themes / structure of course
– Lectures: Big picture, key concepts, provide

foundations, enable + provide tools for deeper
learning through labs

– Labs: Investigative opportunities for deeper
technical explorations; lots of learning for this course
happens while puzzling through assignments

10/9/2019 CSE 484 / CSE M 584 – Autumn 2019 3

FTC on LifeLock (Oct 8, 2019 News)

The refunds stem from a 2015 settlement LifeLock reached with the
Commission, which alleged that from 2012 to 2014 LifeLock violated
an FTC order that required the company to secure consumers’
personal information and prohibited it from deceptive advertising.
The FTC alleged, among other things, that LifeLock failed to
establish and maintain a comprehensive information security
program to protect users’ sensitive personal information, falsely
advertised that it protected consumers’ sensitive data with the
same high-level safeguards used by financial institutions, and falsely
claimed it provided 24/7/365 alerts “as soon as” it received any
indication a consumer’s identity was being used.

10/9/2019 CSE 484 / CSE M 584 - Autumn 2019 4

Relates to class themes, including “what does security means”,
trust, levels of secruity

Back to Software Security

10/9/2019 CSE 484 / CSE M 584 - Autumn 2019 5

Run-Time Checking: StackGuard

10/9/2019 CSE 484 / CSE M 584 6

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Run-Time Checking: StackGuard

10/9/2019 CSE 484 / CSE M 584 7

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Terminator canary: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function
return causes a performance penalty

– For example, 8% for Apache Web server at one point in
time

• StackGuard can be defeated

– A single memory write where the attacker controls both
the value and the destination is sufficient

10/9/2019 CSE 484 / CSE M 584 8

Defeating StackGuard

10/9/2019 CSE 484 / CSE M 584 10

• Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf
– Example: dst is a local pointer variable

buf sfp RET

Return execution to
this address

canarydst

sfp RETcanaryBadPointer, attack code &RET

First overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

More on Defeating StackGuard

• Attacker sets buf to contain (first) a pointer to another
region in buf with the attack code, and then (second) the
attack code

• Attacker sets dst, to contain the address where RET is
stored (recall the assumption that the attacker can also
set dst)

• When the strcpy happens, memory beginning at the
address of RET is overwritten with the contents of buf
– This puts “BadPointer” in the location of RET
– Recall that “BadPointer” is a value for the address at which

the attack code starts (in buf)

• Can you think of other approaches?

10/9/2019 CSE 484 / CSE M 584 11

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas
for a process
– Base of executable region

– Position of stack

– Position of heap

– Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

10/9/2019 CSE 484 / CSE M 584 16

ASLR: Address Space Randomization

• Deployment (examples)

– Linux kernel since 2.6.12 (2005+)

– Android 4.0+

– iOS 4.3+ ; OS X 10.5+

– Microsoft since Windows Vista (2007) (not by default)

• Attacker goal: Guess or figure out target
address (or addresses)

• ASLR more effective on 64-bit architectures

10/9/2019 CSE 484 / CSE M 584 17

ASLR Issues

• NOP slides and heap spraying to increase
likelihood for custom code (e.g., on heap)

• Brute force attacks or memory disclosures
to map out memory on the fly

– Disclosing a single address can reveal the
location of all code within a library, depending
on the ASLR implementation

10/9/2019 CSE 484 / CSE M 584 18

Other Possible Solutions

• Use safe programming languages, e.g., Java

– What about legacy C code?

– (Though Java doesn’t magically fix all security issues )

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

• Modern compiler options, e.g., incorporate stack
canaries

10/9/2019 CSE 484 / CSE M 584 19

Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file

formats, etc.)

• See if program crashes
– If crashes, found a bug

– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

10/9/2019 CSE 484 / CSE M 584 20

10/9/2019 CSE 484 / CSE M 584 - Autumn 2019 21

Beyond Buffer Overflows…

10/9/2019 CSE 484 / CSE M 584 22

Another Type of Vulnerability

• Consider this code:

• Goal: Open only regular files (not symlink, etc)
• What can go wrong?

10/9/2019 CSE 484 / CSE M 584 23

int openfile(char *path) {

struct stat s;

if (stat(path, &s) < 0)

return -1;

if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");

return -1;

}

return open(path, O_RDONLY);

}

TOCTOU (Race Condition)

• TOCTOU == Time of Check to Time of Use:

• Goal: Open only regular files (not symlink, etc)
• Attacker can change meaning of path between stat

and open (and access files he or she shouldn’t)
10/9/2019 CSE 484 / CSE M 584 24

int openfile(char *path) {

struct stat s;

if (stat(path, &s) < 0)

return -1;

if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");

return -1;

}

return open(path, O_RDONLY);

}

This TOCTOU Example

• In call to open, pass O_NOFOLLOW to not
follow symbolic links

• Call fstat on open file descriptor

• …

• Nice reference:
https://developer.apple.com/library/archive/
documentation/Security/Conceptual/SecureC
odingGuide/Articles/RaceConditions.html

10/9/2019 CSE 484 / CSE M 584 - Fall 2017 25

https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Articles/RaceConditions.html

Another Type of Vulnerability

• Consider this code:

10/9/2019 CSE 484 / CSE M 584 26

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

Implicit Cast

• Consider this code:

10/9/2019 CSE 484 / CSE M 584 27

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may
copy huge amounts

of input into buf.

Another Example

10/9/2019 CSE 484 / CSE M 584 28

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Integer Overflow

10/9/2019 CSE 484 / CSE M 584 29

• What if len is large (e.g., len = 0xFFFFFFFF)?

• Then len + 5 = 4 (on many platforms)

• Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

10/9/2019 CSE 484 / CSE M 584 30

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,

– Total tries: 256*8 = 2048

10/9/2019 CSE 484 / CSE M 584 31

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Timing Attacks

• Assume there are no “typical” bugs in the software

– No buffer overflow bugs

– No format string vulnerabilities

– Good choice of randomness

– Good design

• The software may still be vulnerable to timing
attacks

– Software exhibits input-dependent timings

• Complex and hard to fully protect against

10/9/2019 CSE 484 / CSE M 584 32

Other Examples

• Plenty of other examples of timings attacks

– AES cache misses

• AES is the “Advanced Encryption Standard”

• It is used in SSH, SSL, IPsec, PGP, ...

– RSA exponentiation time

• RSA is a famous public-key encryption scheme

• It’s also used in many cryptographic protocols and
products

– Recently: Spectre and Meltdown

10/9/2019 CSE 484 / CSE M 584 33

