CSE 484 | CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materiale



Announcements

* Day Before Thanksgiving: Alternate Video
_esson (e.g., use to support your final project)

* Final Project: Online, marked as draft but dates
should be set

— Linked off of Assignhments page

— 12-15 minute video on security-related topic of your
choice

— Note requirements, e.g., include references, discuss
ethics/legal issues, length

* Lab 1: Try to make sure your sploito works by
end of today (recommendation)




How Can We Attack This?

foo() {
char buf[..] = “attackString”;
printf (buf); //vulnerable

.Saved FP|ret/IP| &buf . buf Saved FP ret/IP_

~— ~— -~ Addr OxFF...F

Printf’s frame Foo’s frame

What should “attackString” be??

10/7/2019 CSE 484 [ CSE M 584 3



Using %n to Overwrite Return Address

View inside foo() stack frame

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Buffer with attacker-supplied input “string”

.

N

N

"\

“... attackStringZn”, attack code

&RET SFP

RET

/" N\

v,

equal to ... what?

Number of characters in
attackString must be

I

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in attackString into RET

eturn
execution to
this address

That is, Zn will print 5, not 2.

C allows you to concisely specify the “width” to print, causing printf to pad by printing
additional blank characters without reading anything else off the stack.

Example: printf(“%5d”, 10) will print three spaces followed by the integer: ““ 10”

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)




Another Variant:
Function Pointer Overflow

* Cuses function pointers for callbacks: if
pointer to F is stored in memory location P,
then one can call F as (*P)(...)

10/7/2019 CSE 484 | CSE M 584



Another Variant:
Function Pointer Overflow

include <stdio.h>
vold someFunction(int arg)

{

printf("This 1s someFunction being called and arg is: Zd\n", arg);

printf(“"Whoops leaving the function now!\n");

main()
{
void (*pf)(int);
pf = &someFunction;
printf(“"We’'re about to call someFunction() using a pointer!\n");
(PF)(5);

printf("Wwow that was cool. Back to main now!\n\n");

https://www.learn-c.org/en/Function Pointers

10/7/2019 CSE 484 [ CSE M 584




Another Variant:
Function Pointer Overflow
* Cuses function pointers for callbacks: if

pointer to F is stored in memory location P,
then one can call F as (*P)(...)

Buffer with attacker-supplied Callback
input string pointer
~ —N— Y4 A N\
Heap attack code overflow

l

Legitimate function F

(elsewhere in memory)

10/7/2019 CSE 484 | CSE M 584 7



Other Overflow Target

* Heap management structures used by
malloc()

— More details in section

10/7/2019 CSE 484 | CSE M 584



Recommended Reading

* [t will be hard to do Lab 1 without reading:
— Smashing the Stack for Fun and Profit
— Exploiting Format String Vulnerabilities

* Links to these readings are posted in the lab
description

10/7/2019 CSE 484 | CSE M 584



Stepping Back

* This class: Broad tour of key concepts in
security
— Key principles
— Foundations [ historical perspective
— Threat modeling, context, ethics, ...

— Lab 1 doesn’t have all modern defenses | compiler
options enabled

* But you’ll still experiment with other variants

— E.g., one target in lab 1 doesn’t save frame pointer
on stack



Buffer Overflow: Causes and Cures

* (lassic memory exploit involves code injection

— Approach: Put malicious code at a predictable location in
memory, usually masquerading as data

— Trick vulnerable program into passing control to it

* Possible defenses:

Prevent execution of untrusted code
Stack “canaries”

Encrypt pointers

Address space layout randomization
Code analysis

OV AW NP

10/7/2019 CSE 484 [ CSE M 584 11



Executable Space Protection

* Mark all writeable memory locations as non-
executable

— Example: Microsoft’s Data Execution Prevention (DEP)
— This blocks many code injection exploits
* Hardware support

— AMD “NX” bit (no-execute), Intel “XD” bit (executed
disable) (in post-2004 CPUs)

— Makes memory page non-executable
* Widely deployed
— Windows XP SP2+ (2004), Linux since 2004 (check

distribution), OS X 10.5+ (10.4 for stack but not heap),
Android 2.3+

10/7/2019 CSE 484 [ CSE M 584

12



What Does “Executable Space
Protection’” Not Prevent?

* Write on back of worksheet (we’ll call this worksheet 6)

10/7/2019 CSE 484 | CSE M 584



What Does “Executable Space
Protection” Not Prevent?

* (anstill corrupt stack...
— ... or function pointers or critical data on the heap

* Aslong as “saved EIP” points into existing code,
executable space protection will not block control transfer

* This is the basis of return-to-libc exploits

— Overwrite saved EIP with address of any library routine,
arrange stack to look like arguments

* Does not look like a huge threat
— Attacker cannot execute arbitrary code
— But...?

10/7/2019 CSE 484 | CSE M 584 14



return-to-libc

* Can still call critical functions, like exec

* Seelab1, sploit 8

10/7/2019 CSE 484 | CSE M 584

15



return-to-libc on Steroids

* Overwritten saved EIP need not point to the
beginning of a library routine

* Any existing instruction in the code image is fine
— Will execute the sequence starting from this instruction

* What if instruction sequence contains RET?
— Execution will be transferred... to where?

— Read the word pointed to by stack pointer (ESP)
e Guess what? Its value is under attacker’s control!

— Use it as the new value for EIP
e Now control is transferred to an address of attacker’s choice!

— Increment ESP to point to the next word on the stack

10/7/2019 CSE 484 [ CSE M 584

16



Chaining RETs for Fun and Profit

* Can chain together sequences ending in RET

— Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

* What s this good for?

* Answer [Shacham et al.]: everything
— Turing-complete language

— Build “gadgets” for load-store, arithmetic, logic, control
flow, system calls

— Attack can perform arbitrary computation using no
injected code at all - return-oriented programming

10/7/2019 CSE 484 [ CSE M 584

17



Return-Oriented Programming

| @hg anl vﬁl

Sahwday, Jamary 6,2007

Daily Blog Tips awarded th

Laff Jweek Darren ﬁse, the Daily Blog Tips is Ren
from the ambus  atfidcting] a vast audierjce  foll
Problogger blag,  of | bloggers| |who |are imp
annduced the winners of looking to dwprove their

his _latest Group Whitifg] blogs. Whenjash

Profect  called ' Reviews\ the | :

Yed abjout The
and Peedictions"/ Among \Da ‘ 108 :Iella:
P
““A%«'
\

Re t|u|r|n o|r |ien |ted Pro|g|ra |mm | ing

10/7/2019 CSE 484 [ CSE M 584



