
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• Day Before Thanksgiving: Alternate Video
Lesson (e.g., use to support your final project)

• Final Project: Online, marked as draft but dates
should be set
– Linked off of Assignments page
– 12-15 minute video on security-related topic of your

choice
– Note requirements, e.g., include references, discuss

ethics/legal issues, length

• Lab 1: Try to make sure your sploit0 works by
end of today (recommendation)

10/7/2019 CSE 484 / CSE M 584 – Autumn 2019 2

How Can We Attack This?

foo() {

char buf[…] = “attackString”;

printf(buf); //vulnerable

}

What should “attackString” be??

10/7/2019 CSE 484 / CSE M 584 3

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

Using %n to Overwrite Return Address

10/7/2019 CSE 484 / CSE M 584 4

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters in
attackString must be
equal to … what?

C allows you to concisely specify the “width” to print, causing printf to pad by printing
additional blank characters without reading anything else off the stack.

Example: printf(“%5d”, 10) will print three spaces followed by the integer: “ 10”
That is, %n will print 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

View inside foo() stack frame

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if
pointer to F is stored in memory location P,
then one can call F as (*P)(…)

10/7/2019 CSE 484 / CSE M 584 5

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if
pointer to F is stored in memory location P,
then one can call F as (*P)(…)

10/7/2019 CSE 484 / CSE M 584 6

https://www.learn-c.org/en/Function_Pointers

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if
pointer to F is stored in memory location P,
then one can call F as (*P)(…)

10/7/2019 CSE 484 / CSE M 584 7

attack code

Buffer with attacker-supplied

input string

Callback

pointer

Heap

Legitimate function F

overflow

(elsewhere in memory)

Other Overflow Target

• Heap management structures used by
malloc()

– More details in section

10/7/2019 CSE 484 / CSE M 584 8

Recommended Reading

• It will be hard to do Lab 1 without reading:

– Smashing the Stack for Fun and Profit

– Exploiting Format String Vulnerabilities

• Links to these readings are posted in the lab
description

10/7/2019 CSE 484 / CSE M 584 9

Stepping Back

• This class: Broad tour of key concepts in
security
– Key principles

– Foundations / historical perspective

– Threat modeling, context, ethics, …

– Lab 1 doesn’t have all modern defenses / compiler
options enabled

• But you’ll still experiment with other variants
– E.g., one target in lab 1 doesn’t save frame pointer

on stack

10/7/2019 CSE 484 / CSE M 584 10

Buffer Overflow: Causes and Cures

• Classic memory exploit involves code injection
– Approach: Put malicious code at a predictable location in

memory, usually masquerading as data

– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code

2. Stack “canaries”

3. Encrypt pointers

4. Address space layout randomization

5. Code analysis

6. …

10/7/2019 CSE 484 / CSE M 584 11

Executable Space Protection

• Mark all writeable memory locations as non-
executable
– Example: Microsoft’s Data Execution Prevention (DEP)
– This blocks many code injection exploits

• Hardware support
– AMD “NX” bit (no-execute), Intel “XD” bit (executed

disable) (in post-2004 CPUs)
– Makes memory page non-executable

• Widely deployed
– Windows XP SP2+ (2004), Linux since 2004 (check

distribution), OS X 10.5+ (10.4 for stack but not heap),
Android 2.3+

10/7/2019 CSE 484 / CSE M 584 12

What Does “Executable Space
Protection” Not Prevent?

10/7/2019 CSE 484 / CSE M 584 13

• Write on back of worksheet (we’ll call this worksheet 6)

What Does “Executable Space
Protection” Not Prevent?

10/7/2019 CSE 484 / CSE M 584 14

• Can still corrupt stack …

– … or function pointers or critical data on the heap

• As long as “saved EIP” points into existing code,
executable space protection will not block control transfer

• This is the basis of return-to-libc exploits

– Overwrite saved EIP with address of any library routine,
arrange stack to look like arguments

• Does not look like a huge threat

– Attacker cannot execute arbitrary code

– But … ?

return-to-libc

• Can still call critical functions, like exec

• See lab 1, sploit 8

10/7/2019 CSE 484 / CSE M 584 15

return-to-libc on Steroids

• Overwritten saved EIP need not point to the
beginning of a library routine

• Any existing instruction in the code image is fine
– Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
– Execution will be transferred… to where?

– Read the word pointed to by stack pointer (ESP)
• Guess what? Its value is under attacker’s control!

– Use it as the new value for EIP
• Now control is transferred to an address of attacker’s choice!

– Increment ESP to point to the next word on the stack

10/7/2019 CSE 484 / CSE M 584 16

Chaining RETs for Fun and Profit

• Can chain together sequences ending in RET

– Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything

– Turing-complete language

– Build “gadgets” for load-store, arithmetic, logic, control
flow, system calls

– Attack can perform arbitrary computation using no
injected code at all – return-oriented programming

10/7/2019 CSE 484 / CSE M 584 17

Return-Oriented Programming

10/7/2019 CSE 484 / CSE M 584 18

