
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• Homework #1: Due Friday (10/4)
• Lab #1: Out, discussed in Quiz Section
• Day Before Thanksgiving: Alternate Video

Lesson (e.g., use to support your final project)
• Final Project: Online, marked as draft but dates

should be set
– Linked off of Assignments page
– 12-15 minute video on security-related topic of your

choice
– Note requirements, e.g., include references, discuss

ethics/legal issues, length

10/4/2019 CSE 484 / CSE M 584 – Autumn 2019 2

David Aucsmith’s Lecture

• Questions?

• Observations?

• General Thoughts?

10/4/2019 CSE 484 / CSE M 584 - Autumn 2019 3

Example Topics

• Espionage vs warfare

• Cyber crime as a service

• Policies undecided (e.g., Apple vs FBI)

• Tempest

• Tor and Nation State Actors

• Supply Chain Security

• Future: Attacks on Trust

10/4/2019 CSE 484 / CSE M 584 - Autumn 2019 4

Last Time: Basic Buffer Overflows

10/4/2019 CSE 484 / CSE M 584 8

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations.

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Off-By-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)

buffer[i] = input[i];

}

void main(int argc, char *argv[]) {

if (argc==2)

mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame…
– On little-endian architecture, make it point into buT for

previous function will be read from buffer10/4/2019 CSE 484 / CSE M 584 9

This will copy 513
characters into
buffer. Oops!

Frame Pointer Overflow

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK

CODE

10/4/2019 CSE 484 / CSE M 584 10

Variable Arguments in C

10/4/2019 CSE 484 / CSE M 584 11

• In C, can define a function with a variable number
of arguments

– Example: void printf(const char* format, …)

• Examples of usage:

Format specification encoded by special % characters

%d,%i,%o,%u,%x,%X – integer argument
%s – string argument
%p – pointer argument (void *)
Several others

Format Strings in C

• Proper use of printf format string:
int foo = 1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Risky use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

10/4/2019 CSE 484 / CSE M 584 12

What happens if buffer
contains format symbols

starting with % ???

Background: Implementation of
Variable Args

• Special functions va_start, va_arg, va_end
compute arguments at run-time

10/4/2019 CSE 484 / CSE M 584 13

printf has an internal
stack pointer

Format Strings in C

• Proper use of printf format string:
int foo=1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Risky use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

10/4/2019 CSE 484 / CSE M 584 14

What happens if buffer
contains format symbols

starting with % ???

Format Strings in C

• Proper use of printf format string:
int foo=1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Risky use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

10/4/2019 CSE 484 / CSE M 584 15

What happens if buffer
contains format symbols

starting with % ???

If the buffer contains format symbols starting with %, the
location pointed to by printf’s internal stack pointer will be

interpreted as an argument of printf.

This can be exploited to move printf’s internal stack pointer!

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

10/4/2019 CSE 484 / CSE M 584 16

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if cryptographic key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

10/4/2019 CSE 484 / CSE M 584 17

Writing Stack with Format Strings

• %n format symbol tells printf to write the number
of characters that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpeted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will
be interpreted as address into which the number of
characters will be written.

10/4/2019 CSE 484 / CSE M 584 19

How Can We Attack This?

foo() {

char buf[…] = “attackString”;

printf(buf); //vulnerable

}

What should “attackString” be??

10/4/2019 CSE 484 / CSE M 584 20

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

To Do

• In addition to

– HW 1

– Lab 1

• Look at Final Project Description

• Think about format string vulnerabilities

• Think about how to defend against buffer
overflow attacks

10/4/2019 CSE 484 / CSE M 584 - Autumn 2019 21

