
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• If you’re on the class mailing list, you should
have received several emails.

• Switch from Google Group to Piazza.

• Ethics form: Due next Wednesday (10/2).

• Homework #1: Due next Friday (10/4)
– Start forming groups, feel free to use Piazza

• Lab #1: Aiming for out this week. Quiz section
this week is critical!

• Office Hour changes

9/30/2019 CSE 484 / CSE M 584 – Autumn 2019 2

TOWARDS DEFENSES

9/30/2019 CSE 484 / CSE M 584 3

Approaches to Security

• Prevention
– Stop an attack

• Detection
– Detect an ongoing or past attack

• Response
– Respond to attacks

• The threat of a response may be enough to
deter some attackers

9/30/2019 CSE 484 / CSE M 584 4

Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the
weakest link,” and security can fail in many places

– No reason to attack the strongest part of a system if you can
walk right around it.

9/30/2019 CSE 484 / CSE M 584 5

Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the
weakest link,” and security can fail in many places

– No reason to attack the strongest part of a system if you can
walk right around it.

9/30/2019 CSE 484 / CSE M 584 6

Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the
weakest link,” and security can fail in many places

– No reason to attack the strongest part of a system if you can
walk right around it.

9/30/2019 CSE 484 / CSE M 584 - Fall 2017 7

Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the
weakest link,” and security can fail in many places

– No reason to attack the strongest part of a system if you can
walk right around it.

9/30/2019 CSE 484 / CSE M 584 - Fall 2017 8

Attacker’s Asymmetric Advantage

9/30/2019 CSE 484 / CSE M 584 9

Attacker’s Asymmetric Advantage

9/30/2019 CSE 484 / CSE M 584 10

• Attacker only needs to win in one place
• Defender’s response:

• Threat Model
• Defense in Depth

From Policy to Implementation

• After you’ve figured out what security means to
your application, there are still challenges:
– Requirements bugs

• Incorrect or problematic goals

– Design bugs
• Poor use of cryptography
• Poor sources of randomness
• ...

– Implementation bugs
• Buffer overflow attacks
• ...

– Is the system usable?

9/30/2019 CSE 484 / CSE M 584 11

Many Participants

• Many parties involved
– System developers

– Companies deploying the system

– The end users

– The adversaries (possibly one of the above)

• Different parties have different goals
– System developers and companies may wish to optimize cost

– End users may desire security, privacy, and usability

– But the relationship between these goals is quite complex
(will customers choose features or security?)

9/30/2019 CSE 484 / CSE M 584 12

Better News

• There are a lot of defense mechanisms

– We’ll study some, but by no means all, in this
course

• It’s important to understand their limitations

– “If you think cryptography will solve your
problem, then you don’t understand
cryptography… and you don’t understand your
problem” -- Bruce Schneier

9/30/2019 CSE 484 / CSE M 584 13

SOFTWARE SECURITY

9/30/2019 CSE 484 / CSE M 584 14

Adversarial Failures

• Software bugs are bad
– Consequences can be serious

• Even worse when an intelligent adversary wishes
to exploit them!
– Intelligent adversaries: Force bugs into “worst possible”

conditions/states

– Intelligent adversaries: Pick their targets

• Buffer overflows bugs: Big class of bugs
– Normal conditions: Can sometimes cause systems to fail

– Adversarial conditions: Attacker able to violate security
of your system (control, obtain private information, ...)

9/30/2019 CSE 484 / CSE M 584 15

BUFFER OVERFLOWS

9/30/2019 CSE 484 / CSE M 584 16

A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris

• Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

• Due to a coding error, it created new copies as
fast as it could and overloaded infected
machines

• $10-100M worth of damage

9/30/2019 CSE 484 / CSE M 584 17

A Bit More History

• Morris: Graduate student at Cornell, son of NSA
chief scientist

• Convicted under Computer Fraud and Abuse
Act, sentenced to 3 years of probation and 400
hours of community service

• Now an EECS professor at MIT

9/30/2019 CSE 484 / CSE M 584 18

Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a
buffer overflow attack against a vulnerable version
of fingerd on VAX systems

– By sending special string to finger daemon, worm
caused it to execute code creating a new worm copy

9/30/2019 CSE 484 / CSE M 584 19

Famous Internet Worms

• Buffer overflows: very common cause of attacks

– Still today!

• Morris worm (1988): overflow in fingerd
– 6,000 machines infected

• CodeRed (2001): overflow in MS-IIS server
– 300,000 machines infected in 14 hours

• SQL Slammer (2003): overflow in MS-SQL server

– 75,000 machines infected in 10 minutes (!!)

• Sasser (2005): overflow in Windows LSASS

– Around 500,000 machines infected

9/30/2019 CSE 484 / CSE M 584 20

… And More

• Conficker (2008-09): overflow in Windows RPC
– Around 10 million machines infected (estimates vary)

• Stuxnet (2009-10): several zero-day overflows + same
Windows RPC overflow as Conficker
– Windows print spooler service

– Windows LNK shortcut display

– Windows task scheduler

• Flame (2010-12): same print spooler and LNK overflows as
Stuxnet
– Targeted cyperespionage virus

• Still ubiquitous issues, especially in embedded systems
– E.g., our car work (OnStar, Bluetooth, CD player)

9/30/2019 CSE 484 / CSE M 584 21

Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside
computer memory (stack or heap)

• Typical situation:

– A function takes some input that it writes into a pre-
allocated buffer.

– The developer forgets to check that the size of the input
isn’t larger than the size of the buffer.

– Uh oh.
• “Normal” bad input: crash

• “Adversarial” bad input : take control of execution

9/30/2019 CSE 484 / CSE M 584 22

Stack Buffers

9/30/2019 CSE 484 / CSE M 584 23

• Suppose Web server contains this function
void func(char *str) {

char buf[126];

...

strcpy(buf,str);

...

}

• No bounds checking on strcpy()

• If str is longer than 126 bytes

– Program may crash

– Attacker may change program behavior

buf uh oh!

Example: Changing Flags

9/30/2019 CSE 484 / CSE M 584 24

• Suppose Web server contains this function
void func(char *str) {

char buf[126];

...

strcpy(buf,str);

...

}

• Authenticated variable non-zero when user has
extra privileges

• Morris worm also overflowed a buffer to overwrite
an authenticated flag in fingerd

buf authenticated11 (:-) !)

Memory Layout

• Text region: Executable code of the program

• Heap: Dynamically allocated data

• Stack: Local variables, function return addresses;
grows and shrinks as functions are called and
return

9/30/2019 CSE 484 / CSE M 584 25

Text region Heap Stack

Addr 0x00...0 Addr 0xFF...F

Top Bottom

Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• When this function is invoked, a new frame
(activation record) is pushed onto the stack.

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP
Caller’s

frame
Addr 0xFF...F

Saved

FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

9/30/2019 CSE 484 / CSE M 584 26

What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations.

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP
Caller’s

frame
Addr 0xFF...F

Saved

FP
buf

Local variables

str

Args

9/30/2019 CSE 484 / CSE M 584 27

Executing Attack Code

• Suppose buffer contains attacker-created string

– For example, str points to a string received from the
network as the URL

• When function exits, code in the buffer will be

executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root

ret/IP
Saved

FP
buf

Caller’s stack

frame
Addr 0xFF...F

Attacker puts actual assembly
instructions into their input string,
e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the
buffer appears in the location where the
system expects to find return address

Caller’s

frame
str

9/30/2019 CSE 484 / CSE M 584 28

Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain
correct address of attack code in the RET
position

– The value in the RET position must point to the
beginning of attack assembly code in the buffer

• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack
position their buffer will be when the function is
called

9/30/2019 CSE 484 / CSE M 584 29

Problem: No Bounds Checking

• strcpy does not check input size

– strcpy(buf, str) simply copies memory contents into buf
starting from *str until “\0” is encountered, ignoring the
size of area allocated to buf

• Many C library functions are unsafe

– strcpy(char *dest, const char *src)

– strcat(char *dest, const char *src)

– gets(char *s)

– scanf(const char *format, …)

– printf(const char *format, …)

9/30/2019 CSE 484 / CSE M 584 30

• strncpy(char *dest, const char *src, size_t n)
– If strncpy is used instead of strcpy, no more than n characters will

be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)

strncat(record,cpw,MAX_STRING_LEN-1);

Does Bounds Checking Help?

9/30/2019 CSE 484 / CSE M 584 31

Copies username (“user”) into buffer
(“record”), then appends “:” and
hashed password (“cpw”)

Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)

strncat(record,cpw,MAX_STRING_LEN-1);

9/30/2019 CSE 484 / CSE M 584 32

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1

characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1

characters into buffer

What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)

buffer[i] = input[i];

}

void main(int argc, char *argv[]) {

if (argc==2)

mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame
– On little-endian architecture, make it point into buffer

– RET for previous function will be read from buffer!

9/30/2019 CSE 484 / CSE M 584 33

Off-By-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)

buffer[i] = input[i];

}

void main(int argc, char *argv[]) {

if (argc==2)

mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame…
– On little-endian architecture, make it point into buT for

previous function will be read from buffer9/30/2019 CSE 484 / CSE M 584 34

This will copy 513
characters into
buffer. Oops!

Frame Pointer Overflow

ret/IP
Caller’s

frame
Addr 0xFF...F

Saved

FP
buf

Local variables

str

Args

Fake RETFake FP
ATTACK

CODE

9/30/2019 CSE 484 / CSE M 584 35

Other Overflow Targets

• Function pointer, format strings in C

– More details next time

• Heap management structures used by
malloc()

– More details in section

• These are all attacks you can look forward to
in Lab #1 

9/30/2019 CSE 484 / CSE M 584 36

To Do

• Ethics form (due Wed Oct 2 – do it soon!)

• Homework #1 (due Fri Oct 4)

– Now: Groups formed? Think about events and
technologies you’d like to review, ideally finish
before Thursday.

• Quiz section this week critical for Lab 1

• Guest lecture on Wednesday

9/30/2019 CSE 484 / CSE M 584 37

