
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• My office hours

– 12/4 (Wed), 11:30am, CSE1 Attrium?

• Final Project checkpoint 2 looked great!

• HW3 + Lab3: both “light”, but please don’t
wait until Friday to start

• Friday: Optional opportunity to learn about
Space + Security

12/5/2019 CSE 484 / CSE M 584 – Autumn 2019 2

Roadmap

12/5/2019

• History, How we got here

• Mobile malware

• Mobile platforms vs. traditional platforms

• Dive into Android

4

Questions: Mobile Malware

Q: How might malware authors get malware
onto phones?

Q: What are some goals that mobile device
malware authors might have?

12/5/2019 5

Smartphone (In)Security

Users accidentally install malicious applications.

12/5/2019 6

Smartphone (In)Security

Even legitimate applications exhibit questionable behavior.

12/5/2019 7

Hornyack et al.: 43 of 110 Android
applications sent location or phone ID to
third-party advertising/analytics servers.

And in the news this morning…

12/5/2019 CSE 484 / CSE M 584 - Autumn 2019 8

Mobile Malware Goals

• “Unique” to phones:
– Premium SMS messages

– Identify location

– Record phone calls

– Log SMS

• Similar to desktop/PCs:
– Connects to botmasters

– Steal data

– Phishing

– Malvertising

12/5/2019 9

Malware in the Wild

[Zhou et al.]

Android malware grew quickly!
Today: millions of samples.

12/5/2019 10

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

12/5/2019 13

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

12/5/2019 14

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less)
trusted.

12/5/2019 15

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Isolation: Applications are isolated
– Each runs in a separate execution context

– No default access to file system, devices, etc.

– Different than traditional OSes where multiple
applications run with the same user permissions!

• App Store: Approval process for applications
– Market: Vendor controlled/Open

– App signing: Vendor-issued/self-signed

– User approval of permissions

12/5/2019 16

More Details: Android

• Based on Linux

• Application sandboxes

– Applications run as
separate UIDs, in
separate processes.

– Memory corruption
errors only lead to
arbitrary code execution in the context of the particular
application, not complete system compromise!

– (Can still escape sandbox – but must compromise Linux
kernel to do so.)  allows rooting

12/5/2019 17

[Enck et al.]

Challenges with Isolated Apps

Mobile platforms isolate applications for security,
but…

1. Permissions: How can applications access
sensitive resources?

2. Communication: How can applications
communicate with each other?

We’ve seen similar issues on the Web, and to
some extent with IoT (see Lab3).

12/5/2019 20

Permission Granting Problem
Smartphones (and other modern OSes) try to prevent
such attacks by limiting applications’ access to:

– System Resources (clipboard, file system).

– Devices (camera, GPS, phone, …).

– (We’ve seen permission granting as a challenge
with mobile devices, and expect to see them the
future for other technologies as well…)

Standard approach: Ask the user.

How should operating system grant
permissions to applications?

12/5/2019 21

Two Ways to Ask the User

Prompts (time-of-use)

12/5/2019 22

Manifests (install-time)

Questions

• Q: What are the pros and cons of the
manifest-based permission model?

• Q: What are the pros and cons of the “ask
each use” permission mode?

12/5/2019 23

Two Ways to Ask the User

Prompts (time-of-use) Manifests (install-time)

Disruptive, which leads to
prompt-fatigue.

12/5/2019 24

Two Ways to Ask the User

Prompts (time-of-use) Manifests (install-time)

Out of context; not
understood by users.

In practice, both are overly permissive:
Once granted permissions, apps can misuse them.

Disruptive, which leads to
prompt-fatigue.

12/5/2019 25

Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.

12/5/2019 26

Do users understand the warnings?

Are Manifests Usable?

[Felt et al.]

12/5/2019 27

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?

[Felt et al.]

12/5/2019 28

Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).

• Big change. Now app developers need to check for
permissions or catch exceptions.

12/5/2019 29

Over-Permissioning

• Android permissions are badly documented.

• Researchers have mapped APIs → permissions.
www.android-permissions.org (Felt et al.), http://pscout.csl.toronto.edu (Au et al.)

[Felt et al.]

12/5/2019 30

http://www.android-permissions.org/
http://pscout.csl.toronto.edu/

Let this application
access my location now.
Let this application
access my location now.

Insight:
A user’s natural UI actions within
an application implicitly carry
permission-granting semantics.

12/5/2019 31

Improving Permissions:
User-Driven Access Control

[Roesner et al]

Let this application
access my location now.
Let this application
access my location now.

Insight:
A user’s natural UI actions within
an application implicitly carry
permission-granting semantics.

12/5/2019 32

Study:
Many users already believe (52% of 186)
– and/or desire (68%) – that resource access
follows the user-driven access control model.

Study:
Many users already believe (52% of 186)
– and/or desire (68%) – that resource access
follows the user-driven access control model.

Improving Permissions:
User-Driven Access Control

[Roesner et al]

Permission Re-Delegation

• An application without a permission gains
additional privileges through another application.

• Settings application is
deputy: has permissions,
and accidentally exposes
APIs that use those
permissions.

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

12/5/2019 34

Aside: Incomplete Isolation

12/5/2019 35

Embedded UIs and libraries always run with the host
application’s permissions! (No same-origin policy here…)

[Shekhar et al.]

Like us on
Facebook!

Ad from
ad library

Social button
from Facebook
library

Map from
Google
library

Android Application Signing

• Apps are signed

– Signed application certificate defines which user ID is
associated with which applications

– Different apps run under different UIDs

• Shared UID feature

– Shared Application Sandbox possible, where two or
more apps signed with same developer key can declare
a shared UID in their manifest

12/5/2019 36

Shared UIDs

• App 1: Requests GPS / camera access

• App 2: Requests Network capabilities

• Generally:
– First app can’t exfiltrate information

– Second app can’t exfiltrate anything interesting

• With Shared UIDs (signed with same private key)
– Permissions are a superset of permissions for each app

– App 1 can now exfiltrate; App 2 can now access GPS /
camera

12/5/2019 37

File Permissions

• Files written by one application cannot be read by other
applications
– Previously, this wasn’t true for files stored on the SD card (world

readable!) – Android cracked down on this

• It is possible to do full file system encryption
– Key = Password/PIN combined with salt, hashed

• Fact that these properties have changed over time
speaks to
– The historic challenges for security, even at large companies
– The importance of considering security from the beginning

12/5/2019 38

Android Permission
Recommendations

• Only use the permissions necessary for your app to
work

• Pay attention to permissions required by libraries

• Be transparent

• Make system accesses explicit. Providing continuous
indications when you access sensitive capabilities
(for example, the camera or microphone) …

https://developer.android.com/training/permissions/usa
ge-notes

12/5/2019 CSE 484 / CSE M 584 39

https://developer.android.com/training/permissions/usage-notes

(2) Inter-Process Communication

• Primary mechanism in Android: Intents

– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name

• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW)
and/or data (URI and MIME type)

• Apps specify Intent Filters for their components.

12/5/2019 40

Unauthorized Intent Receipt

• Attack #1: Eavesdropping / Broadcast Thefts

– Implicit intents make intra-app messages public.

• Attack #2: Activity Hijacking

– May not always work

• Attack #3: Service Hijacking

– Android picks one at random
upon conflict!

[Chin et al.]

12/5/2019 41

Intent Spoofing

• Attack #1: General intent spoofing

– Receiving implicit intents makes component public.

– Allows data injection.

• Attack #2: System intent spoofing

– Can’t directly spoof, but victim apps often don’t check
specific “action” in intent.

[Chin et al.]

12/5/2019 42

Memory Management

• Address Space Layout Randomization to
randomize addresses on stack

• Hardware-based No eXecute (NX) to prevent code
execution on stack/heap

• Stack guard derivative

• Some defenses against double free bugs (based on
OpenBSD’s dmalloc() function)

• etc.
[See http://source.android.com/tech/security/index.html]

12/5/2019 43

http://source.android.com/tech/security/index.html

Android Fragmentation

• Many different variants of
Android (unlike iOS)

– Motorola, HTC, Samsung, …

• Less secure ecosystem

– Inconsistent or incorrect
implementations

– Slow to propagate kernel
updates and new versions

[https://developer.android.com/about/dashbo
ards/index.html]

12/5/2019 44

