CSE 484 | CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

* My office hours
—11/20 (Wed), 2:30pm, CSE1 403
—11/27 (Wed), None
—12/4 (Wed), 12:30pm, CSE1 403
* Final Project checkpoints looked great! Next
Final Project deadline Nov 22
— Outline + references
— Doesn’t need to be super-detailed

e Lab2: Nov 22

Announcements

Quiz section this week:
— Lab 2 discussion (briefly)
— Lab 3 discussion (please attend)

Nov 22: Charlie Reis (Google)

Nov 27: See website for alternate video
lecture

Dec 4: Seattle PD + US Secret Service

Review: Side Channel Attacks

* Attacks based on information that can be gleaned
from the physical implementation of a system,
rather than breaking its theoretical properties

— Most commonly discussed in the context of
cryptosystems

— But also prevalent in many contexts
* E.g., we discussed browser fingerprinting

* E.g., we discussed history sniffing

* E.g., we also discussed the TENEX password verification
system

11/19/2019

Review: Keyboard Eavesdropping

Zhuang et al. “Keyboard Acoustic Emanations Revisited” CCS 2005
Vuagnoux et al. “Compromising Electromagnetic Emanations of Wired and Wireless
Keyboards” USENIX Security 2009

11/19/2019 5

[Backes et al.]

Compromising Reflections

11/19/2019 6

Audio from Video

Davis et al. “The Visual Microphone: Passive Recovery of Sound from Video” SIGGRAPH 2014

Identifying Web Pages: Traffic Analysis

client
e ™ encrypted [
= 2 e traffic
Google . « (.
N\ J 1
attacker

tunnel endpoint

Local Administrator Internet Service Provider

"

destination
webservers

b
Ll

F 3

v

'y

v

F 3

Law Enforcement Agency ...

Figure 1: Website fingerprinting scenario and conceivable at-

tackers

Herrmann et al. “Website Fingerprinting: Attacking Popular Privacy Enhancing
Technologies with the Multinomial Naive-Bayes Classifier” CCSW 2009

11/19/2019

Identifying Web Pages: Electrical Outlets

YAHQOO
04 -
0.0 -
0.4 -
N
< CNN1 =z
- 0.4+ >
: 2. el 2
E.-04- 2
=] =
&) 0]
CNN2 b
W 2o
04— 15
00- o _
-0.4 — ‘] : 05 s R

i 1 T —==—
0 5 10 15 0.0

Time (s)

(a) Time-domain plots (b) Spectrogram plots

Fig. 1: Time- and frequency-domain plots of several power traces as a MacBook loads
two different pages. In the frequency domain, brighter colors represent more energy at
a given frequency. Despite the lack of obviously characteristic information in the time
domain, the classifier correctly identifies all of the above traces.

Clark et al. “Current Events: Identifying Webpages by Tapping the Electrical Outlet” ESORICS 2013

11/19/2019 9

Powerline Eavesdropping

Figure 1: Frequency spectrogram showing various
electrical appliances in the home. Washer cycle on
(1) and off (2). CFL lamp turning off briefly (3) and
then on (4). Note that the TV’s (Sharp 42” LCD)
EMI shifts in frequency, which happens as screen
content changes.

Enev et al.: Televisions, Video Privacy, and Powerline Electromagnetic Interference, CCS 2011

11/19/2019 10

Spectre

* Exploit speculative execution and cache timing
information to extract private information from the
same process

— Example: JavaScript from web page trying to extract
information from Browser

* Architecture Background:
— Hardware architecture provides “promises” to software

— Those proposes focus on the functional properties of
the software, not performance properties

— Architectures do a lot to try to increase performance

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Instruction Speculation Tutorial

Many steps (cycles) to execute one instruction; time flows left to right —

add I B B
load 1 1

Go Faster: Pipelining, branch prediction, & instruction speculation

add I B

load I B

branch I B B B B Predict direction: target or fall thru
and LI I 0] Speculate!

store | | | || | | | Speculate more!

Speculation correct: Commit architectural changes of and (register) & store
(memory) go fast!

Mis-speculate: Abort architectural changes (registers, memory); go in other branch
direction

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Hardware Caching Tutorial

Main Memory (DRAM) 1000x too slow
Add Hardware Cache(s): small, transparent hardware memory

o Like a software cache: speculate near-term reuse (locality) is
common

e Like a hash table: anitem (block or line) can go in one or few
slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4

o —— 122 0| 12 07? o| 12 122 o| 12 16’ o| 16 Note 12
T == Miss 1| == Miss 1| == HIT! 1] == Miss 1| == | victimized
2] =~ | Insert12 2| == | Insert07 2| == No 2] =7 | Victim12 2| == | “early” due
3L== 3L== 3107 | changes 3197 | Insert16 3197 | to “alias”

Spectre (Worksheet)

Consider this code, running as a kernel system call or as part of a cryptographic
library.

if (x < array1_size)
y = array2[array1[x] * 256];

Suppose:
— That an adversary can run code, in the same process.
— That an adversary can control the value x.
— That an adversary has access to array2.
— That the adversary’s code cannot just read arbitrary memory in the process.

— That there is some secret value, elsewhere in the process, that the adversary would like to
learn.

Can you envision a way that an adversary could use their own code, to call a
vulnerable function with the above code, to learn the secret information?
Leverage branch prediction and cache structure [timing.

Spectre: Key Insights

Train branch predictor to follow one branch of a
conditional

After branch predictor trained, make the followed
branch access information that the code should not
be allowed to access

That access information will be loaded into the cache

After the hardware determines that the branch was
incorrectly executed, the logic of the program will be
rolled back but the cache will still be impacted

Time reads to cache, to see which cache lines are
read more efficiently

Attacker Steps

Attacker: Execute code with valid inputs, train branch predictor
to assume conditional is true

Attacker: Invoke code with x outside of array1, array1_size and
array2 not cached, but value at array1+x cached /[Attacker goal:
read secret memory at address array1+x

CPU: CPU guesses bounds check is true, speculatively reads from
array2[array1[x]*256] using malicious x

CPU: Read from array2 loads data into cache at an address that
depends on array1[xi/using malicious x

CPU: Change in cache state not reverted when processor realizes
that speculative execution erroneous

Attacker: Measure cache timings for array2; read of
array2[n*256] will be fast for secret byte n (at array1+x)

Attacker: Repeat for other values of x

Other Types of Side Channels?

11/19/2019 CSE 484 [CSE M 584

