
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• My office hours
– 11/20 (Wed), 2:30pm, CSE1 403

– 11/27 (Wed), None

– 12/4 (Wed), 12:30pm, CSE1 403

• Final Project checkpoints looked great! Next
Final Project deadline Nov 22
– Outline + references

– Doesn’t need to be super-detailed

• Lab 2: Nov 22

11/19/2019 CSE 484 / CSE M 584 – Autumn 2019 2

Announcements

• Quiz section this week:

– Lab 2 discussion (briefly)

– Lab 3 discussion (please attend)

• Nov 22: Charlie Reis (Google)

• Nov 27: See website for alternate video
lecture

• Dec 4: Seattle PD + US Secret Service

11/19/2019 CSE 484 / CSE M 584 – Autumn 2019 3

Review: Side Channel Attacks

• Attacks based on information that can be gleaned
from the physical implementation of a system,
rather than breaking its theoretical properties

– Most commonly discussed in the context of
cryptosystems

– But also prevalent in many contexts

• E.g., we discussed browser fingerprinting

• E.g., we discussed history sniffing

• E.g., we also discussed the TENEX password verification
system

11/19/2019 4

Review: Keyboard Eavesdropping

Zhuang et al. “Keyboard Acoustic Emanations Revisited” CCS 2005
Vuagnoux et al. “Compromising Electromagnetic Emanations of Wired and Wireless
Keyboards” USENIX Security 2009

11/19/2019 5

Compromising Reflections

11/19/2019 6

[Backes et al.]

Audio from Video

Davis et al. “The Visual Microphone: Passive Recovery of Sound from Video” SIGGRAPH 2014

11/19/2019 7

Identifying Web Pages: Traffic Analysis

Herrmann et al. “Website Fingerprinting: Attacking Popular Privacy Enhancing
Technologies with the Multinomial Naïve-Bayes Classifier” CCSW 2009

11/19/2019 8

Identifying Web Pages: Electrical Outlets

Clark et al. “Current Events: Identifying Webpages by Tapping the Electrical Outlet” ESORICS 2013

11/19/2019 9

Powerline Eavesdropping

11/19/2019 10

Enev et al.: Televisions, Video Privacy, and Powerline Electromagnetic Interference, CCS 2011

Spectre

• Exploit speculative execution and cache timing
information to extract private information from the
same process
– Example: JavaScript from web page trying to extract

information from Browser

• Architecture Background:
– Hardware architecture provides “promises” to software

– Those proposes focus on the functional properties of
the software, not performance properties

– Architectures do a lot to try to increase performance

11/19/2019 11

Instruction Speculation Tutorial
Many steps (cycles) to execute one instruction; time flows left to right →

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation

add

load

branch

and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store
(memory) go fast!

Mis-speculate: Abort architectural changes (registers, memory); go in other branch
direction

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Hardware Caching Tutorial
Main Memory (DRAM) 1000x too slow

Add Hardware Cache(s): small, transparent hardware memory

● Like a software cache: speculate near-term reuse (locality) is
common

● Like a hash table: an item (block or line) can go in one or few
slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4

--0
--1
--2
--3

12?
Miss

Insert 12

120
--1
--2
--3

07?
Miss

Insert 07

120
--1
--2
073

12?
HIT!
No

changes

120
--1
--2
073

16?
Miss

Victim 12
Insert 16

160
--1
--2
073

Note 12
victimized

“early” due
to “alias”

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Spectre (Worksheet)

• Consider this code, running as a kernel system call or as part of a cryptographic
library.

if (x < array1_size)
y = array2[array1[x] * 256];

• Suppose:
– That an adversary can run code, in the same process.
– That an adversary can control the value x.
– That an adversary has access to array2.
– That the adversary’s code cannot just read arbitrary memory in the process.
– That there is some secret value, elsewhere in the process, that the adversary would like to

learn.

• Can you envision a way that an adversary could use their own code, to call a
vulnerable function with the above code, to learn the secret information?
Leverage branch prediction and cache structure / timing.

11/19/2019 14

Spectre: Key Insights

• Train branch predictor to follow one branch of a
conditional

• After branch predictor trained, make the followed
branch access information that the code should not
be allowed to access

• That access information will be loaded into the cache

• After the hardware determines that the branch was
incorrectly executed, the logic of the program will be
rolled back but the cache will still be impacted

• Time reads to cache, to see which cache lines are
read more efficiently

11/19/2019 15

Attacker Steps

• Attacker: Execute code with valid inputs, train branch predictor
to assume conditional is true

• Attacker: Invoke code with x outside of array1 , array1_size and
array2 not cached, but value at array1+x cached // Attacker goal:
read secret memory at address array1+x

• CPU: CPU guesses bounds check is true, speculatively reads from
array2[array1[x]*256] using malicious x

• CPU: Read from array2 loads data into cache at an address that
depends on array1[x] using malicious x

• CPU: Change in cache state not reverted when processor realizes
that speculative execution erroneous

• Attacker: Measure cache timings for array2; read of
array2[n*256] will be fast for secret byte n (at array1+x)

• Attacker: Repeat for other values of x

11/19/2019 16

Other Types of Side Channels?

11/19/2019 CSE 484 / CSE M 584 17

