CSE 484 / CSE M 584: Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Announcements

• My office hours
 – 11/20 (Wed), 2:30pm, CSE1 403
 – 11/27 (Wed), None
 – 12/4 (Wed), 12:30pm, CSE1 403

• Final Project checkpoints looked great!

• Next Final Project deadline Nov 22
 – Outline + references
 – Doesn’t need to be super-detailed

• Lab 2: Nov 22
Review: User Authentication: Stepping Back

• What is the threat model?
 – Someone with access to your physical possessions (e.g., key logger, steal written password book)
 – Someone across the Internet (e.g., who compromises one or multiple sites)

• What “costs” are one willing to expend?
 – Usability
 – Legal protection (e.g., passwords vs biometrics and the law)

• Keep in mind password recovery mechanisms
Web Tracking and Privacy
Ads That Follow You

Advertisers (and others) track your browsing behaviors for the purposes of targeted ads, website analytics, and personalized content.
Third-Party Web Tracking

These ads allow criteo.com to link your visits between sites, even if you never click on the ads.
Concerns About Privacy (2010 – 2011)

The Wall Street Journal

The Web's New Gold Mine: Your Secrets

The New York Times

‘Do Not Track’ Privacy Bill Appears in Congress

By TANZINA VEGA

And the privacy legislation just keeps on coming.

On Friday, two bills were introduced in Washington in support of a Do Not Track mechanism that would give users control over how much of their data was collected by advertisers and other online companies.
First and Third Parties

- **First-party cookie**: belongs to top-level domain.
- **Third-party cookie**: belongs to domain of embedded content (such as image, iframe).
Anonymous Tracking

Trackers included in other sites use third-party cookies containing unique identifiers to create browsing profiles.
Basic Tracking Mechanisms

• Tracking requires:
 (1) re-identifying a user.
 (2) communicating id + visited site back to tracker.

Hypertext Transfer Protocol

GET /pixel/p-3aud4J6uA4Z6Y.gif?labels=InvisibleBox&busty=2710 HTTP/1.1\r\nHost: pixel.quantserve.com\r\nConnection: keep-alive\r\nAccept: image/webp,*/*;q=0.8\r\nUser-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36
Referer: http://www.theonion.com/\r\nAccept-Encoding: gzip, deflate, sdch\r\nAccept-Language: en-US, en; q=0.8\r\nCookie: mc=52a65386-f1de1-00ade-0b26e; d=ENkBRgGD4GYPEA35MMIL74MKiyDs1A2MQI1Q
Tracking Technologies

- HTTP Cookies
- HTTP Auth
- HTTP Etags
- Content cache
- IE userData
- HTML5 protocol and content handlers
- HTML5 storage
- Flash cookies
- Silverlight storage
- TLS session ID & resume
- Browsing history
- window.name
- HTTP STS
- DNS cache

- “Zombie” cookies that respawn
 http://samy.pl/evercookie
Fingerprinting Web Browsers

- User agent
- HTTP ACCEPT headers
- Browser plug-ins
- MIME support
- Clock skew

- Installed fonts
- Cookies enabled?
- Browser add-ons
- Screen resolution
- HTML5 canvas (differences in graphics SW/HW!)
EFF’s Panopticlick

- https://panopticlick.eff.org/
Q: How might a website figure out what other site you have visited, without using cookies or tracking?
History Sniffing

How can a webpage figure out which sites you visited previously?

• Color of links
 – CSS :visited property
 – getComputedStyle()
• Cached Web content timing
• DNS timing
How Websites Get Your Identity

Personal trackers

Leakage of identifiers
GET http://ad.doubleclick.net/adj/...
Referer: http://submit.SPORTS.com/...?email=jdoe@email.com
Cookie: id=35c192bcfe0000b1...

Security bugs

Third party buys your identity
Measurement Study (2011)

- **Questions:**
 - How prevalent is tracking (of different types)?
 - How much of a user’s browsing history is captured?
 - How effective are defenses?

- **Approach:** Build tool to automatically crawl web, detect and categorize trackers based on our taxonomy.

Longitudinal studies since then: tracking has increased and become more complex.
How prevalent is tracking?

524 unique trackers on Alexa top 500 websites (homepages + 4 links)

457 domains (91%) embed at least one tracker. (97% of those include at least one cross-site tracker.)

50% of domains embed between 4 and 5 trackers.

One domain includes 43 trackers.
Who/what are the top trackers? (2011)

Top 20 Cross-Site Trackers on Top 500 Domains

Tracker Prevalence (# Domains)

<table>
<thead>
<tr>
<th>Tracker</th>
<th>Cross-Site (Personal)</th>
<th>Cross-Site (Anonymous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doubleclick.net</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>facebook.com</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>google.com</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>quantserve.com</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>twitter.com</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>atdm.com</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>yieldmanager.com</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>revsci.net</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>advertising.com</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>addthis.com</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>adnks.com</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>serving-sys.com</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>youtube.com</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>addthiscdn.com</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>bluekai.com</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>mediaplex.com</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>207.net</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>207.net</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>207.net</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
How has this changed over time?

• The web has existed for a while now...
 - What about tracking before 2011? (our first study)
 - What about tracking before 2009? (first academic study)

• Solution: time travel!

[USENIX Security ’16]
The Wayback Machine to the Rescue

Time travel for web tracking: http://trackingexcavator.cs.washington.edu
1996-2016: More & More Tracking

- More trackers of more types
1996-2016: More & More Tracking

- More trackers of more types, more per site
1996-2016: More & More Tracking

- More trackers of more types, more per site, more coverage
ADINT (2017)

- Advertising for Intelligence Gathering
- Adversary can buy ads and use analytics from those ads to learn information about targets
 - Some ad networks provide location-based ad services
- Purchaser of ads can figure out
 - What mobile phone applications are in use in individual homes
 - A target’s movements through the physical world (e.g., stores, doctors offices, etc)
Side Channels
Side Channel Attacks

• Attacks based on information that can be gleaned from the physical implementation of a system, rather than breaking its theoretical properties
 – Most commonly discussed in the context of cryptosystems
 – But also prevalent in many contexts
 • E.g., we discussed browser fingerprinting
 • E.g., we discussed history sniffing
 • E.g., we also discussed the TENEX password verification system
Examples (on Cryptosystems)

• Timing attacks
• Power analysis

• Good overview:

If you do something different for secret key bits 1 vs. 0, attacker can learn something...
Example Timing Attacks

- RSA: Leverage key-dependent timings of modular exponentiations

- Block Ciphers: Leverage key-dependent cache hits/misses
Power Analysis

• Simple power analysis: Directly read off bits from powerline traces

• Differential power analysis: Look for statistical differences in power traces, based on guesses of a key bit

Image from https://en.wikipedia.org/wiki/Power_analysis
Key Extraction via Electric Potential

Accelerometer Eavesdropping

Aviv et al. “Practicality of Accelerometer Side Channels on Smartphones” ACSAC 2012
Gyroscope Eavesdropping

More Gyroscope

Chen et al. “TouchLogger: Inferring Keystrokes On Touch Screen From Smartphone Motion” HotSec 2011
Keyboard Eavesdropping

Zhuang et al. “Keyboard Acoustic Emanations Revisited” CCS 2005