
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• My office hours
– 11/13 (Wed), 11:30am, CSE1 403
– 11/20 (Wed), 2:30pm, CSE1 403
– 11/27 (Wed), None
– 12/4 (Wed), 12:30pm, CSE1 403

• HW 2 available (due 11/15); extra late day if submitted
by Saturday 5pm (11/9)

• Final Project checkpoint on Friday (11/8) (group
members, brief description)
– https://courses.cs.washington.edu/courses/cse484/19au/

assignments/final_project.html

• No class on Monday (Veterans Day)

11/8/2019 CSE 484 / CSE M 584 – Autumn 2019 2

https://courses.cs.washington.edu/courses/cse484/19au/assignments/final_project.html

Cross-Site Request Forgery
(CSRF/XSRF)

11/8/2019 3

Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off

– Session cookie remains in browser state

• User then visits a malicious website containing
<form name=BillPayForm

action=http://bank.com/BillPay.php>

<input name=recipient value=badperson> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient
when side effects can happen

11/8/2019 CSE 484 / CSE M 584 4

Cookies in Forged Requests

11/8/2019 5

User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E

XSRF True Story

11/8/2019 CSE 484 / CSE M 584 6

[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications

Impact

• Hijack any ongoing session (if no protection)

– Netflix: change account settings, Gmail: steal
contacts, Amazon: one-click purchase

• Reprogram the user’s home router

– Change DNS settings (attacker can see/control
all DNS responses)

• Login to the attacker’s account

11/8/2019 7

Login XSRF: Attacker logs you in as them!

11/8/2019 9

User logged in
as attacker

Attacker’s account reflects user’s behavior

XSRF (aka CSRF): Summary

11/8/2019 CSE 484 / CSE M 584 10

Attack server

Server victim

User victim

1

2

4

Q: how long do you stay logged on to Gmail? Financial sites?

Broader View of CSRF

• Abuse of cross-site data export

– SOP does not control data export (we’ve seen
this before!)

– Malicious webpage can initiates requests from
the user’s browser to an honest server

– Server thinks requests are part of the
established session between the browser and
the server (automatically sends cookies)

11/8/2019 11

XSRF Defenses

11/8/2019 12

• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input
in forms

– Token often based on user’s session ID

– Server must verify correctness of token before
executing sensitive operations

• Why does this work?

– Same-origin policy: attacker can’t read token out of
legitimate forms loaded in user’s browser, so can’t
create fake forms with correct token

11/8/2019 13

<input type=hidden value=23a3af01b>

Referer Validation

11/8/2019 14

• Lenient referer checking – header is optional

• Strict referer checking – header is required

Referer:
http://www.facebook.com/home.php

Referer:
http://www.evil.com/attack.html

Referer:





?

Why Not Always Strict Checking?

• Why might the referer header be suppressed?
– Stripped by the organization’s network filter

– Stripped by the local machine

– Stripped by the browser for HTTPS  HTTP transitions

– User preference in browser

– Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF
defenses today

11/8/2019 15

Injection

11/8/2019 16

Injection Attacks

• http://victim.com/copy.php?name=username

• copy.php includes

system(“cp temp.dat $name.dat”)

• User calls

http://victim.com/copy.php?name=“a; rm *”

• copy.php executes

system(“cp temp.dat a; rm *.dat”);

11/8/2019 17

Basic Issues

• User-supplied data is not validated, filtered, or
sanitized by application

• User input directly used or concatenated to a string
that is used by an interpreter

• Common Injections: SQL, NoSQL, Object Relational
Mapping (ORM), LDAP, Object Graph Navigation
Library, …

11/8/2019 18

SQL Injection

11/8/2019 CSE 484 / CSE M 584 20

Typical Login Prompt

11/8/2019 CSE 484 / CSE M 584 21

Typical Query Generation Code

$selecteduser = $_GET['user'];

$sql = "SELECT Username, Key FROM Users " .

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql);

What if ‘user’ is a malicious string that changes the
meaning of the query?

11/8/2019 CSE 484 / CSE M 584 22

User Input Becomes Part of Query

11/8/2019 CSE 484 / CSE M 584 23

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

Normal Login

11/8/2019 CSE 484 / CSE M 584 24

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘cse484-staff’

Malicious User Input

11/8/2019 CSE 484 / CSE M 584 25

SQL Injection Attack

11/8/2019 CSE 484 / CSE M 584 26

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

Security Instruction via XKCD

11/8/2019 CSE 484 / CSE M 584 27

http://xkcd.com/327/

http://xkcd.com/327/

SQL Injection: Basic Idea

11/8/2019 CSE 484 / CSE M 584 28

Victim server

Victim SQL DB

Attacker

unintended
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end

database changes the meaning of query

• Special case of command injection

Authentication with Backend DB

set UserFound = execute(

“SELECT * FROM UserTable WHERE

username=‘ ” & form(“user”) & “ ′ AND

password= ‘ ” & form(“pwd”) & “ ′ ”);

User supplies username and password, this SQL query checks if

user/password combination is in the database (note: here we’re not

thinking about how to actually securely store a password)

If not UserFound.EOF

Authentication correct

else Fail

11/8/2019 CSE 484 / CSE M 584 29

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

Using SQL Injection to Log In

• User gives username ’ OR 1=1 --

• Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘ ’ OR 1=1 -- …);

• Now all records match the query, so the result
is not empty  correct “authentication”!

11/8/2019 CSE 484 / CSE M 584 30

Always true! Everything after -- is ignored!

Preventing SQL Injection

• Validate all inputs

– Filter out any character that has special meaning
• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form
becoming part of the query code

– E.g.: escape(O’Connor) = O\’Connor

– Check the data type (e.g., input must be an integer)

11/8/2019 CSE 484 / CSE M 584 31

Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)

11/8/2019 CSE 484 / CSE M 584 32

Bind variable (data
placeholder)

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Defenses

• Use safe APIs, e.g., prepared statements in SQL with parameterized
queries
– Define all the SQL code, then pass in each parameter
– Separates code from data

• Whitelist-based server-side input validation
• Escape special characters
• Use LIMIT (and other) SQL controls within queries to prevent mass

disclosure of records

• Remember Defense in Depth, Least Privilege, etc.

• Remember OWASP
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_S
heet
– (though resources now moved elsewhere, this link is to OWASP given value

of OWASP in general)

11/8/2019 33

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Back to Secure Communications

11/8/2019 CSE 484 / CSE M 584 - Autumn 2019 34

Authenticity of Public Keys

11/8/2019 CSE 484 / CSE M 584 35

?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private key

Alice
Bob

public key

Threat: Man-In-The-Middle (MITM)

11/8/2019 CSE 484 / CSE M 584 36

Google.com

Distribution of Public Keys

• Public announcement or public directory
– Risks: forgery and tampering

• Public-key certificate
– Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)

• Common approach: certificate authority (CA)
– Single agency responsible for certifying public keys

– After generating a private/public key pair, user proves
his identity and knowledge of the private key to obtain
CA’s certificate for the public key (offline)

– Every computer is pre-configured with CA’s public key

11/8/2019 CSE 484 / CSE M 584 37

Trusted(?) Certificate Authorities

11/8/2019 CSE 484 / CSE M 584 38

Hierarchical Approach

• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)

– Everybody must know
the root’s public key

– Instead of single cert,
use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),

sigAnotherCA(“Alice”, PKA)

– What happens if root authority is ever compromised?

11/8/2019 CSE 484 / CSE M 584 39

You encounter this every day…

11/8/2019 CSE 484 / CSE M 584 40

SSL/TLS: Encryption & authentication for connections

Example of a Certificate

11/8/2019 CSE 484 / CSE M 584 41

X.509 Certificate

11/8/2019 CSE 484 / CSE M 584 42

Many Challenges…

• Hash collisions

• Weak security at CAs

– Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen

– We’ll talk more about this later in the course

• Etc…

11/8/2019 CSE 484 / CSE M 584 43

Colliding Certificates

11/8/2019 CSE 484 / CSE M 584 44

serial number

validity period

real cert
domain name

real cert
RSA key

X.509 extensions

signature

identical bytes
(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

serial number

validity period

rogue cert
domain name

???

X.509 extensions

signature

set by
the CA

Hash to the same
MD5 value!

Valid for both certificates!

[Sotirov et al. “Rogue Certificates”]

11/8/2019 CSE 484 / CSE M 584 45

Attacking CAs

Security of DigiNotar
servers:
• All core certificate

servers controlled by
a single admin
password
(Pr0d@dm1n)

• Software on public-
facing servers out of
date, unpatched

• No anti-virus (could
have detected attack)

Consequences

• Attacker needs to first divert users to an attacker-
controlled site instead of the real Google, Yahoo,
Skype, but then…

– For example, use DNS to poison the mapping of
mail.yahoo.com to an IP address

• … “authenticate” as the real site

• … decrypt all data sent by users

– Email, phone conversations, Web browsing

11/8/2019 CSE 484 / CSE M 584 46

Certificate Revocation

• Revocation is very important

• Many valid reasons to revoke a certificate
– Private key corresponding to the certified public key has

been compromised

– User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

– CA’s private key has been compromised!

• Expiration is a form of revocation, too
– Many deployed systems don’t bother with revocation

– Re-issuance of certificates is a big revenue source for
certificate authorities

11/8/2019 CSE 484 / CSE M 584 48

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)

– CA periodically issues a signed list of revoked
certificates

• Credit card companies used to issue thick books of
canceled credit card numbers

– Can issue a “delta CRL” containing only updates

• Online revocation service

– When a certificate is presented, recipient goes to a
special online service to verify whether it is still valid

• Like a merchant dialing up the credit card processor

11/8/2019 CSE 484 / CSE M 584 49

Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with
a rogue certificate until revoked

• Goal: make it impossible for a CA to issue a bad
certificate for a domain without the owner of that
domain knowing

– (Then what?)

• Approach: auditable certificate logs

www.certificate-transparency.org

11/8/2019 CSE 484 / CSE M 584 50

Attempt to Fix CA Problems:

Certificate Pinning

• Trust on first access: tells browser how to act
on subsequent connections

• HPKP – HTTP Public Key Pinning

– Use these keys!

– HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security

– Only access server via HTTPS

– HTTP response header field "Strict-Transport-
Security"

11/8/2019 CSE 484 / CSE M 584 51

