CSE 484 / CSE M 584: Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

- My office hours
 - 11/6 (Wed), 1:30pm, CSE1 678 (small room, unfortunately)
 - 11/13 (Wed), 11:30am, CSE1 403
 - 11/20 (Wed), 2:30pm, CSE1 403
 - 11/27 (Wed), None
 - 12/4 (Wed), 12:30pm, CSE1 403
- TA office hours today as normal, but different TAs
- HW 2 available
- Quiz section next week: Lab 2

Which Property Do We Need?

- UNIX passwords stored as hash(password)
 - **One-wayness:** hard to recover the/a valid password
- Financial transactions
 - Weak collision resistance (first example)
 - Collision resistance (second example)
- Auction bidding
 - Alice wants to bid B, sends H(B), later reveals B
 - One-wayness: rival bidders should not recover B (this may mean that she needs to hash some randomness with B too)
 - Collision resistance: Alice should not be able to change her mind to bid B' such that H(B)=H(B')

Common Hash Functions

- MD5 Don't use!
 - 128-bit output
 - Designed by Ron Rivest, used very widely
 - Collision-resistance broken (summer of 2004)
- RIPEMD-160
 - 160-bit variant of MD5
- SHA-1 (Secure Hash Algorithm) Don't use!
 - 160-bit output
 - US government (NIST) standard as of 1993-95
 - Theoretically broken 2005; practical attack 2017!
- SHA-256, SHA-512, SHA-224, SHA-384
- SHA-3: standard released by NIST in August 2015

Recall: Achieving Integrity

Message authentication schemes: A tool for protecting integrity.

Integrity and authentication: only someone who knows KEY can compute correct MAC for a given message.

HMAC

- Construct MAC from a cryptographic hash function
 - Invented by Bellare, Canetti, and Krawczyk (1996)
 - Used in SSL/TLS, mandatory for Ipsec
- Construction
 - HMAC(K,M) = Hash(K xor OPAD, Hash(K xor IPAD, M))
- Why not block ciphers? (At the time it was designed)
 - Hashing is faster than block ciphers in software
 - Can easily replace one hash function with another
 - There used to be US export restrictions on encryption

Challenge Question

- Alice and Bob are both cryptographers, and they are talking on the phone. They want to randomly flip a coin. If they were together, in person, they would flip a real coin and see if it was Heads or Tails. But they are not together, in person, and they don't trust each other enough to have one of them flip a coin and tell the other person the answer.
- Using the techniques we've discussed so far in class, how can Alice and Bob effectively flip a random coin together, over the phone, such that they both trust the answer even though they don't trust each other?

Both compute random bit as bA xor bB

Why not a solution? Because Bob can pick bB such that bA xor bB is whatever outcome Bob wants

Challenge Question

- Alice and Bob are both cryptographers, and they are talking on the phone. They want to randomly flip a coin. If they were together, in person, they would flip a real coin and see if it was Heads or Tails. But they are not together, in person, and they don't trust each other enough to have one of them flip a coin and tell the other person the answer.
- Using the techniques we've discussed so far in class, how can Alice and Bob effectively flip a random coin together, over the phone, such that they both trust the answer even though they don't trust each other?

Back to RSA

Public Key Crypto: Basic Problem

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

<u>Goals</u>: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:

- Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
- Compute n=pq and $\varphi(n)=(p-1)(q-1)$
- Choose small e, relatively prime to $\varphi(n)$
 - Typically, e=3 or e=2¹⁶+1=65537
- Compute unique d such that $ed \equiv 1 \mod \varphi(n)$ How to
 - Modular inverse: $d \equiv e^{-1} \mod \varphi(n)$
- Public key = (e,n); private key = (d,n)
- Encryption of m (m a number between 0 and n-1):
 c = m^e mod n
- Decryption of c: $c^d \mod n = (m^e \mod n)^d \mod n = m$

compute?

RSA + OAEP

- Plain RSA encryption malleable, e.g.,
 - Adversary sees $C1 = M1^e \mod N$
 - Adversary sees $C_2 = 2^e \mod N // or$ any value Adversary wants
 - Adversary compute C3 = C1 * C2 mod N
 - Adversary sends C3 to Bob
 - Bob decrypts C3. Result is C3^d mod N = $(C1*C2)^d$ mod N = C1^d *C2^d mod N = 2*M1 mod N
 - This structural property is undesirable / unexpected for a "secure" encryption scheme
- Also problems if M < cube root of N (if e=3)
- In practice, OAEP is used: instead of encrypting M, encrypt M xor G(r); r xor H(M xor G(r))

– r is random and new each time, G and H are hash functions

OAEP as a Figure

- M xor G(r); r xor H(M xor G(r))
- G, H hash functions

- $C = (M')^e \mod n$
- Do you see how to decrypt C to recover M? (Side note, similar to DES internals)

Digital Signatures

Digital Signatures: Basic Idea

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

Goal: Bob sends a "digitally signed" message

- 1. To compute a signature, must know the private key
- 2. To verify a signature, only the public key is needed

RSA Signatures

- Public key is (n,e), private key is (n,d)
- To sign message m: s = m^d mod n
 - Signing & decryption are same **underlying** operation in RSA
 - It's infeasible to compute s on m if you don't know d
- To verify signature s on message m:
 verify that s^e mod n = (m^d)^e mod n = m
 - "Just like encryption" (for RSA primitive)
 - Anyone who knows n and e (public key) can verify signatures produced with d (private key)
- "Just like encryption" in quotes!

RSA Signature Malleability

- Plain RSA signatures malleable, e.g.,
 - Adversary sees M1, S1 = $M1^d \mod N$
 - Adversary sees M₂, S₂ = $M_2^d \mod N$
 - Adversary compute S3 = S1 * S2 mod N; M3=M1*M2 mod N
 - Adversary sends M3, S3 to Alice
 - Alice verifies signature of M3, S3. Via S3^e mod N = (S1*S2)^e mod N = S1^e *S2^e mod N = M1*M2 mod N = M3; signature verifies
 - Conclusion: Adversary can forge signature of M3 if sees signature for M1,M2
- In practice, also need padding & hashing
- Standard padding/hashing schemes exist for RSA signatures

DSS Signatures

- Digital Signature Standard (DSS)
 U.S. government standard (1991, most recent rev. 2013)
- Public key: (p, q, g, y=g^x mod p), private key: x
- Signing is randomized
- Security of DSS requires hardness of discrete log
 - If could solve discrete logarithm problem, would extract x (private key) from g^x mod p (public key)
- Important Note: Significant advantages in using elliptic curve groups – groups with some similar mathematical properties (i.e., are "groups") but have better security and performance (size) properties

Stepping Back

Cryptography Summary Thus Far

- Goal: Privacy
 - Symmetric keys:
 - One-time pad, Stream ciphers
 - Block ciphers (e.g., DES, AES) → modes: EBC, CBC, CTR
 - Public key crypto (e.g., RSA)
- Goal: Integrity
 - MACs, often using hash functions (e.g, MD5, SHA-256)
- Goal: Privacy and Integrity
 - Encrypt-then-MAC
- Goal: Authenticity (and Integrity)
 Digital signatures (e.g., RSA, DSS)