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Announcements

• My office hours 
– 11/6 (Wed), 1:30pm, CSE1 678 (small room, 

unfortunately)
– 11/13 (Wed), 11:30am, CSE1 403
– 11/20 (Wed), 2:30pm, CSE1 403
– 11/27 (Wed), None
– 12/4 (Wed), 12:30pm, CSE1 403

• TA office hours today as normal, but different 
TAs

• HW 2 available
• Quiz section next week: Lab 2
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Which Property Do We Need?

• UNIX passwords stored as hash(password)

– One-wayness: hard to recover the/a valid password

• Financial transactions

– Weak collision resistance (first example)

– Collision resistance (second example)

• Auction bidding

– Alice wants to bid B, sends H(B), later reveals B

– One-wayness: rival bidders should not recover B (this may mean 
that she needs to hash some randomness with B too)

– Collision resistance: Alice should not be able to change her mind 
to bid B’ such that H(B)=H(B’)
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Common Hash Functions

• MD5 – Don’t use!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm) – Don’t use!
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3:  standard released by NIST in August 2015
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Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)

– Used in SSL/TLS, mandatory for Ipsec

• Construction
– HMAC(K,M) = Hash(K xor OPAD, Hash(K xor IPAD, M))

• Why not block ciphers? (At the time it was 
designed)
– Hashing is faster than block ciphers in software

– Can easily replace one hash function with another

– There used to be US export restrictions on encryption
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Challenge Question

• Alice and Bob are both cryptographers, and they are 
talking on the phone. They want to randomly flip a 
coin. If they were together, in person, they would flip 
a real coin and see if it was Heads or Tails. But they 
are not together, in person, and they don’t trust 
each other enough to have one of them flip a coin 
and tell the other person the answer. 

• Using the techniques we’ve discussed so far in class, 
how can Alice and Bob effectively flip a random coin 
together, over the phone, such that they both trust 
the answer even though they don’t trust each other?
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Not a Solution
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Pick bit bA at 
random Pick bit bB at 

random

bA

bB

Both compute random bit as bA xor bB

Why not a solution? Because Bob can pick bB such that 
bA xor bB is whatever outcome Bob wants
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Pick bit bA at 
random Pick bit bB at 

random

C1 = Locked box with bA

C2 = Locked box with bB

Info to open first box C1
Now knows 

bA

Info to open second box C2
Now knows 

bB Both compute random bit as bA xor bB
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Pick bit bA at 
random

Pick bit bB at 
random

C1 = H(bA || RA)

C2 = H(bB || RB)

Send bA || RA
Verify that 

has of 
message 
equals C1

Send bB || RB
Verify that 

has of 
message 
equals C2 Both compute random bit as bA xor bB

Pick RA as 
long random 

string

Pick RB as 
long random 

string

|| denotes concatenation



Back to RSA
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Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob



RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 1024 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n);  private key = (d,n)

• Encryption of m (m a number between 0 and n-1):            
c = me mod n

• Decryption of c: cd mod n = (me mod n)d mod n = m
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How to 
compute?



RSA + OAEP

• Plain RSA encryption malleable, e.g., 
– Adversary sees C1 = M1e mod N
– Adversary sees C2 = 2e mod N // or any value Adversary wants
– Adversary compute C3 = C1 * C2 mod N
– Adversary sends C3 to Bob
– Bob decrypts C3. Result is C3d mod N = (C1*C2)d mod N = C1d

*C2d mod N = 2*M1 mod N
– This structural property is undesirable / unexpected for a 

“secure” encryption scheme

• Also problems if M < cube root of N (if e=3)
• In practice, OAEP is used: instead of encrypting M, 

encrypt M xor G(r) ; r xor H(M xor G(r))
– r is random and new each time, G and H are hash functions
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OAEP as a Figure

• M xor G(r) ; r xor H(M xor G(r))
• G, H hash functions

• C = (M’)e mod n
• Do you see how to decrypt C to recover M? (Side note, 

similar to DES internals)
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Digital Signatures
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Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob



RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m:  s = md mod n

– Signing & decryption are same underlying operation in 
RSA

– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:   
verify that se mod n = (md)e mod n = m
– “Just like encryption” (for RSA primitive)
– Anyone who knows n and e (public key) can verify 

signatures produced with d (private key)

• “Just like encryption” in quotes!
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RSA Signature Malleability 

• Plain RSA signatures malleable, e.g., 
– Adversary sees M1, S1 = M1d mod N
– Adversary sees M2, S2 = M2d mod N
– Adversary compute S3 = S1 * S2 mod N ; M3=M1*M2 mod N
– Adversary sends M3, S3 to Alice
– Alice verifies signature of M3, S3. Via S3e mod N = (S1*S2)e

mod N = S1e *S2e mod N = M1*M2 mod N = M3; signature 
verifies

– Conclusion: Adversary can forge signature of M3 if sees 
signature for M1,M2

• In practice, also need padding & hashing
• Standard padding/hashing schemes exist for RSA 

signatures
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DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x
• Signing is randomized
• Security of DSS requires hardness of discrete log

– If could solve discrete logarithm problem, would extract x 
(private key) from gx mod p (public key)

• Important Note: Significant advantages in using 
elliptic curve groups – groups with some similar 
mathematical properties (i.e., are “groups”) but have 
better security and performance (size) properties
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Stepping Back
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Cryptography Summary Thus Far

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers

• Block ciphers (e.g., DES, AES) modes: EBC, CBC, CTR

– Public key crypto (e.g., RSA)

• Goal: Integrity
– MACs, often using hash functions (e.g, MD5, SHA-256)   

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)
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