
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• My office hours
– 11/6 (Wed), 1:30pm, CSE1 678 (small room,

unfortunately)
– 11/13 (Wed), 11:30am, CSE1 403
– 11/20 (Wed), 2:30pm, CSE1 403
– 11/27 (Wed), None
– 12/4 (Wed), 12:30pm, CSE1 403

• TA office hours today as normal, but different
TAs

• HW 2 available
• Quiz section next week: Lab 2

11/1/2019 CSE 484 / CSE M 584 – Autumn 2019 2

Which Property Do We Need?

• UNIX passwords stored as hash(password)

– One-wayness: hard to recover the/a valid password

• Financial transactions

– Weak collision resistance (first example)

– Collision resistance (second example)

• Auction bidding

– Alice wants to bid B, sends H(B), later reveals B

– One-wayness: rival bidders should not recover B (this may mean
that she needs to hash some randomness with B too)

– Collision resistance: Alice should not be able to change her mind
to bid B’ such that H(B)=H(B’)

11/1/2019 CSE 484 / CSE M 584 3

Common Hash Functions

• MD5 – Don’t use!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm) – Don’t use!
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3: standard released by NIST in August 2015

11/1/2019 CSE 484 / CSE M 584 4

Recall: Achieving Integrity

11/1/2019 CSE 484 / CSE M 584 6

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)

– Used in SSL/TLS, mandatory for Ipsec

• Construction
– HMAC(K,M) = Hash(K xor OPAD, Hash(K xor IPAD, M))

• Why not block ciphers? (At the time it was
designed)
– Hashing is faster than block ciphers in software

– Can easily replace one hash function with another

– There used to be US export restrictions on encryption

11/1/2019 CSE 484 / CSE M 584 7

Challenge Question

• Alice and Bob are both cryptographers, and they are
talking on the phone. They want to randomly flip a
coin. If they were together, in person, they would flip
a real coin and see if it was Heads or Tails. But they
are not together, in person, and they don’t trust
each other enough to have one of them flip a coin
and tell the other person the answer.

• Using the techniques we’ve discussed so far in class,
how can Alice and Bob effectively flip a random coin
together, over the phone, such that they both trust
the answer even though they don’t trust each other?

11/1/2019 CSE 484 / CSE M 584 8

Not a Solution

11/1/2019 CSE 484 / CSE M 584 9

Pick bit bA at
random Pick bit bB at

random

bA

bB

Both compute random bit as bA xor bB

Why not a solution? Because Bob can pick bB such that
bA xor bB is whatever outcome Bob wants

11/1/2019 CSE 484 / CSE M 584 10

Pick bit bA at
random Pick bit bB at

random

C1 = Locked box with bA

C2 = Locked box with bB

Info to open first box C1
Now knows

bA

Info to open second box C2
Now knows

bB Both compute random bit as bA xor bB

Challenge Question

• Alice and Bob are both cryptographers, and they are
talking on the phone. They want to randomly flip a
coin. If they were together, in person, they would flip
a real coin and see if it was Heads or Tails. But they
are not together, in person, and they don’t trust
each other enough to have one of them flip a coin
and tell the other person the answer.

• Using the techniques we’ve discussed so far in class,
how can Alice and Bob effectively flip a random coin
together, over the phone, such that they both trust
the answer even though they don’t trust each other?

11/1/2019 CSE 484 / CSE M 584 11

11/1/2019 CSE 484 / CSE M 584 12

Pick bit bA at
random

Pick bit bB at
random

C1 = H(bA || RA)

C2 = H(bB || RB)

Send bA || RA
Verify that

has of
message
equals C1

Send bB || RB
Verify that

has of
message
equals C2 Both compute random bit as bA xor bB

Pick RA as
long random

string

Pick RB as
long random

string

|| denotes concatenation

Back to RSA

11/1/2019 CSE 484 / CSE M 584 - Autumn 2019 13

Public Key Crypto: Basic Problem

11/1/2019 CSE 484 / CSE M 584 14

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 1024 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n); private key = (d,n)

• Encryption of m (m a number between 0 and n-1):
c = me mod n

• Decryption of c: cd mod n = (me mod n)d mod n = m

11/1/2019 CSE 484 / CSE M 584 15

How to
compute?

RSA + OAEP

• Plain RSA encryption malleable, e.g.,
– Adversary sees C1 = M1e mod N
– Adversary sees C2 = 2e mod N // or any value Adversary wants
– Adversary compute C3 = C1 * C2 mod N
– Adversary sends C3 to Bob
– Bob decrypts C3. Result is C3d mod N = (C1*C2)d mod N = C1d

*C2d mod N = 2*M1 mod N
– This structural property is undesirable / unexpected for a

“secure” encryption scheme

• Also problems if M < cube root of N (if e=3)
• In practice, OAEP is used: instead of encrypting M,

encrypt M xor G(r) ; r xor H(M xor G(r))
– r is random and new each time, G and H are hash functions

11/1/2019 CSE 484 / CSE M 584 16

OAEP as a Figure

• M xor G(r) ; r xor H(M xor G(r))
• G, H hash functions

• C = (M’)e mod n
• Do you see how to decrypt C to recover M? (Side note,

similar to DES internals)
11/1/2019 CSE 484 / CSE M 584 17

G

r



H

M’

M

Digital Signatures

11/1/2019 CSE 484 / CSE M 584 19

Digital Signatures: Basic Idea

11/1/2019 CSE 484 / CSE M 584 20

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

– Signing & decryption are same underlying operation in
RSA

– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
– “Just like encryption” (for RSA primitive)
– Anyone who knows n and e (public key) can verify

signatures produced with d (private key)

• “Just like encryption” in quotes!

11/1/2019 CSE 484 / CSE M 584 21

RSA Signature Malleability

• Plain RSA signatures malleable, e.g.,
– Adversary sees M1, S1 = M1d mod N
– Adversary sees M2, S2 = M2d mod N
– Adversary compute S3 = S1 * S2 mod N ; M3=M1*M2 mod N
– Adversary sends M3, S3 to Alice
– Alice verifies signature of M3, S3. Via S3e mod N = (S1*S2)e

mod N = S1e *S2e mod N = M1*M2 mod N = M3; signature
verifies

– Conclusion: Adversary can forge signature of M3 if sees
signature for M1,M2

• In practice, also need padding & hashing
• Standard padding/hashing schemes exist for RSA

signatures

11/1/2019 CSE 484 / CSE M 584 22

DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x
• Signing is randomized
• Security of DSS requires hardness of discrete log

– If could solve discrete logarithm problem, would extract x
(private key) from gx mod p (public key)

• Important Note: Significant advantages in using
elliptic curve groups – groups with some similar
mathematical properties (i.e., are “groups”) but have
better security and performance (size) properties

11/1/2019 CSE 484 / CSE M 584 23

Stepping Back

11/1/2019 CSE 484 / CSE M 584 24

Cryptography Summary Thus Far

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers

• Block ciphers (e.g., DES, AES) modes: EBC, CBC, CTR

– Public key crypto (e.g., RSA)

• Goal: Integrity
– MACs, often using hash functions (e.g, MD5, SHA-256)

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)

11/1/2019 CSE 484 / CSE M 584 25

