CSE 484 | CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

My office hours next week: Wed 12:30pm,
CSE1403

HW 2 available
Lab 1 due

Book suggestions: Mitnick on Social
Engineering; Chris Hadnagy on Social
Engineering; “No Tech Hacking” book

Research Discussions

* Monday (10/14): Peter Ney on Bio-Cyber Security and Cell
Site Simulators

* Monday (10/21): Karl Koscher on Automotive Cyber
Security

* Wednesday (10/23): Ivan Evtimov on Adversarial Machine
Learning

« Monday (10/28): Emily McReynolds on Law and Policy

10/25/2019 CSE 484 [CSE M 584 — Autumn 2019 3

Begin Crypto Review

* Also quiz section yesterday

* Also good anyway, recalling “spiral learning”
process

10/25/2019 CSE 484 | CSE M 584 - Autumn 2019 4

Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

* Asymmetric cryptography

— Each party creates a public key pk and a secret
key sk.

10/25/2019 CSE 484 [CSE M 584

How Cryptosystems are Made

* Primitives first (like block ciphers or RSA)
» Schemes second (like ECB, CTR mode)
* Protocols third (like SSL/TLS, SSH)

Block Ciphers and Keyed

Permutation

* Not just shuffling of input bits!

Plaintext

— Suppose plaintext = “111”.
Then “111” is not the only Key —
possible ciphertext!

* [nstead:
— Permutation of possible outputs
— For N-bit input, 2N! possible permutations
— Use secret key to pick a permutation

10/25/2019 CSE 484 [CSE M 584

L

block
cipher

|

Question from Last Time

* Question written on a worksheet: If/how you
would use block ciphers with keys that are
larger than blocks

* The way | think about this:
— Think about keys and blocks separately
— Keys determine which permutation to use

— Blocks are the inputs/outputs to the keyed
permutations

Example: With 3-bit Blocks

Key = 0000000 Key = 0000001 Key = 0000010
o Jows v Tovwa oo ~Joses
000 111 000 000 000 001
001 101 001 101 001 000
010 001 010 010 010 010
011 000 011 001 011 011
100 110 100 100 100 111
101 010 101 011 101 101
110 100 110 111 110 100

111 o1 111 110 111 110

10/25/2019 CSE 484 | CSE M 584 - Autumn 2019

Standard Block Ciphers

* DES: Data Encryption Standard

— Feistel structure: builds invertible function using non-
invertible ones

— Invented by IBM, issued as federal standard in 1977
— 64-bit blocks, 56-bit key + 8 bits for parity

* AES: Advanced Encryption Standard
— New federal standard as of 2001
* NIST: National Institute of Standards & Technology

— Based on the Rijndael algorithm
* Selected via an open process

— 128-bit blocks, keys can be 128, 192 or 256 bits

10/25/2019 CSE 484 [CSE M 584

10

Electronic Code Book (ECB) Mode

plaintext
P1 p2 P3 P4 P5
v key | key § key | key | key
< ¥ < ¥ ¥
block block block block block
cipher cipher cipher cipher cipher

v v v v v

* ldentical blocks of plaintext produce identical blocks of ciphertext
* No integrity checks: can mix and match blocks

10/25/2019 CSE 484 [CSE M 584 1

Information Leakage in ECB Mode

>

W Encryptin ECB mode

[Wikipedia]

10/25/2019 CSE 484 | CSE M 584

12

10/25/2019

End Review

CSE 484 | CSE M 584 - Autumn 2019

13

Cipher Block Chaining (CBC) Mode: Encryption

plaintext
p1 Z P P4
Initialization
vector > é k —>é k —> é k —)é
(random) yy ey vy ey vy ey »kaey
Sent with block block block block
ciphertext cipher cipher cipher cipher

v \ % \Z l | l
o -Hdphertext @

* Identical blocks of plaintext encrypted differently

* Last cipherblock depends on entire plaintext
 Still does not guarantee integrity

10/25/2019 CSE 484 [CSE M 584

CBC Mode: Decryption

plaintext
p1 Z P P4
A
Initialization
vector >$ é @ é
A 4‘lkey ,n(key > 4Vkey — 4Vkey
decrypt decrypt decrypt decrypt

— T
e et | G

10/25/2019 CSE 484 | CSE M 584

10/25/2019

ECB vs. CBC

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

CSE 484 | CSE M 584

CBC and Electronic Voting

| plaintext I
L Y h Y
Initialization (_D
vector > ;
(gupposedto key key
e random)

5.,

Found in the source code for Diebold voting machines:

DesCBCEncrypt ((des c block*)tmp, (des c block*)record.m Data,
totalSize, DESKEY, NULL, DES_ENCRYPT)

10/25/2019 CSE 484 | CSE M 584 17

Counter Mode (CTR): Encryption

Initial ctr

(random) ——

A 4 v

Mciphertext] e8| FETGATEE

* ldentical blocks of plaintext encrypted differently
* Still does not guarantee integrity; Fragile if ctr repeats

10/25/2019

CSE 484 | CSE M 584

ctr ctr+1 ctr+2 ctr+3
| Mey | Key | Key | Key
block block block block
cipher cipher cipher cipher
N4 2| (T yan Nan
P 1P \j D B3 lp4 \[>

18

Counter Mode (CTR): Decryption

Initial ctr

10/25/2019

ctr ctr+1 ctr+2 ctr+3
| Key | Key | Key | _Key
block block block block
cipher cipher cipher cipher

_

> B

) B

) @O

p1

p2

P3

P4

CSE 484 | CSE M 584

Stepping Back:
Flavors of Cryptography
* Symmetric cryptography

— Both communicating parties have access to a
shared random string K, called the key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret
key sk.

10/25/2019 CSE 484 [CSE M 584

Symmetric Setting

Both communicating parties have access to a
shared random string K, called the key.

>|Decapsulatelﬁ>
|

K

Bob

Adversary

10/25/2019 CSE 484 [CSE M 584 21

Asymmetric Setting

Each party creates a public key pk and a secret key sk.

>|Decapsulatelﬁ>
I

pka,sks

pkA Bob
pks,sks

10/25/2019 CSE 484 [CSE M 584 22

Flavors of Cryptography

* Symmetric cryptography
— Both communicating parties have access to a
shared random string K, called the key.

* Asymmetric cryptography

— Each party creates a public key pk and a secret
key sk.

10/25/2019 CSE 484 [CSE M 584

Asymmetric (Public Key) Encryption

* Let’s now look at an asymmetric building
block: RSA

* Don’t need to memorize details (for HW2,
you can always look up details)

* Should try to understand “API-level” details
(Pll clarify this as we go through slides)

Requirements for Public Key Encryption

* Key generation: computationally easy to generate
a pair (public key PK, private key SK)

* Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=E, (M)

 Decryption: given ciphertext C=E, (M) and private
key SK, easy to compute plaintext M
— Infeasible to learn anything about M from C without SK
— Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

10/25/2019 CSE 484 [CSE M 584

25

Some Number Theory Facts

* Euler totient function ¢(n) (n21) is the number of
integers in the [1,n] interval that are relatively prime to n

— Two numbers are relatively prime if their greatest
common divisor (gcd) is 1

— Easy to compute for primes: ¢(p) = p-1
— Note that ¢(ab) = ¢(a) ¢(b)

* Main thing to “remember”:

— Easy to compute ¢(ab) if know a and b, for two primes a
and b

— Not known how to efficiently compute @(ab)ifaand b
unknown, for two primes aand b

10/25/2019 CSE 484 [CSE M 584 26

RSA CryptOSYStem [Rivest, Shamir, Adleman 1977]

* Key generation:

— Generate large primes p, g
* Say, 2048 bits each (need primality testing, too)

— Compute n=pq and ¢(n)=(p-1)(g-1)
— Choose small e, relatively prime to ¢(n)
* Typically, e=3 or e=2"9+1=65537
— Compute unique d such that ed =1 mod ¢(n) How to
* Modularinverse: d = e'mod ¢(n) <
— Public key = (e,n); private key =(d,n)
* Encryption of m (m a number between 0 and n-1):
c=me¢modn

* Decryptionof ¢: c®modn=(m®modn)®modn=m

compute?

10/25/2019 CSE 484 [CSE M 584 27

Why Decryption Works (FYI)

Decryption of c: =(memodn)modn=(m®)¢modn=m
Recall n=pq and ¢(n)=(p-1)(g-1) and ed = 1 mod ¢(n)

Chinese Remainer Theorem: To show m& mod n = m mod n,
sufficient to show:

— m®¥modp=mmod p
— m*¥mod g=mmod q

fm=omodp > me=0omodp

Else med = med'm = mka)P-Im =mP(P) m for some k, and h=k(g-1).
Why? Recall how d was chosen and the definition of mod.

Fermat Little Theorem: m(PYhm = 1Pm mod p = m mod p

10/25/2019 CSE 484 [CSE M 584 28

Why is RSA “Secure’”?

* RSA problem: given ¢, n=pq, and e such that
gcd(e, @(n))=1, find m such that m®=c mod n

— In other words, recover m from ciphertext ¢ and public key (n,e) by
taking e™" root of ¢ modulo n

— Thereis no known efficient algorithm for doing this
* Factoring problem: given positive integer n, find
primes p,, ..., p, such that n=p.®p_.%...p %k

* If factoring is easy, then RSA problem is easy (knowing
factors means you can compute d = inverse of e mod (p-1)(g-1))

— It may be possible to break RSA without factoring n -- but if it is, we
don’t know how

10/25/2019 CSE 484 [CSE M 584

Caveats and Why RSA is “Insecure”

* Encrypted message needs to be an integer less
than n

* Don’t use RSA directly for privacy — output is
deterministic! Need to pre-process input somehow

— Recall ECB mode privacy concerns

* Plain RSA also does not provide integrity
— Can tamper with encrypted messages

— Suppose adversary sees two ciphertext c¢1 and c2,
and then sends c3 = ¢1 * c2 mod n to the recipient.
What would that decrypt to?

How to Use RSA to Encrypt

* In practice, OAEP is used: instead of encrypting

M, encrypt
— ris random and fresh, G and H are hash functions

* We will return to this after discussing hash
functions

10/25/2019 CSE 484 [CSE M 584 31

Some notes on modular arithmetic

* Can take modulus at any time in operation

* Try online tools, like
https://www.wolframalpha.com/

10/25/2019 CSE 484 | CSE M 584 - Autumn 2019

https://www.wolframalpha.com/

