
CSE 484 / CSE M 584:
Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials ...

Announcements

• TA office hours as usual, and great place for
lab discussions

• I will again mute HW1 , until I’ve looked at
all of them

• Guest lecturers next Monday and
Wednesday But no office hours for me
next week

10/18/2019 CSE 484 / CSE M 584 – Autumn 2019 2

Misc

• How to think about security, paranoia, etc

10/18/2019 CSE 484 / CSE M 584 - Autumn 2019 3

Research Discussions

• Monday (10/14): Peter Ney on Bio-Cyber Security and Cell
Site Simulators

• Monday (10/21): Karl Koscher on Automotive Cyber
Security

• Wednesday (10/23): Ivan Evtimov on Adversarial Machine
Learning

• Monday (10/28): Emily McReynolds on Law and Policy

10/18/2019 CSE 484 / CSE M 584 – Autumn 2019 4

Broad Classes of Security Research

• Measurement

• Analysis / attack exploration

• Building secure systems

• Human-computer interaction

• Guest lectures connected to threat modeling
and to buffer overflows as well

10/18/2019 CSE 484 / CSE M 584 5

Flavors of Cryptography

• Symmetric cryptography

– Both communicating parties have access to a
shared random string K, called the key.

– Challenge: How do you privately share a key?

• Asymmetric cryptography

– Each party creates a public key pk and a secret
key sk.

– Challenge: How do you validate a public key?

10/18/2019 CSE 484 / CSE M 584 6

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.

10/18/2019 CSE 484 / CSE M 584 7

?

Ignore for now: How is this achieved in practice??

One-Time Pad

10/18/2019 CSE 484 / CSE M 584 8

= 10111101…

= 00110010…

10001111…
00110010… =

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

• Easy to compute
– Encryption and decryption are the same operation

– Bitwise XOR is very cheap to compute

• As secure as theoretically possible
– Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources

– …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

– …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?

10/18/2019 CSE 484 / CSE M 584 9

Problems with One-Time Pad

• (1) Key must be as long as the plaintext

– Impractical in most realistic scenarios

– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused

10/18/2019 CSE 484 / CSE M 584 10

Dangers of Reuse

10/18/2019 CSE 484 / CSE M 584 11

= 00000000…

= 00110010…

00110010…
00110010… =

00000000…P1

C1

= 11111111…

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) =
(P1P2)(KK) = P1P2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext

– Impractical in most realistic scenarios

– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused

– Attacker can obtain XOR of plaintexts

10/18/2019 CSE 484 / CSE M 584 12

Integrity?

10/18/2019 CSE 484 / CSE M 584 13

= 10111101…

= 00110010…

10001111…
00110010… =

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios

– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
– One-time pad only guarantees confidentiality

– Attacker cannot recover plaintext, but can
easily change it to something else

10/18/2019 CSE 484 / CSE M 584 14

Reducing Key Size

• What to do when it is infeasible to pre-share huge
random keys?

– When one-time pad is unrealistic…

• Use special cryptographic primitives:
block ciphers, stream ciphers

– Single key can be re-used (with some restrictions)

– Not as theoretically secure as one-time pad

10/18/2019 CSE 484 / CSE M 584 15

Stream Ciphers

• One-time pad: Ciphertext(Key,Message)=MessageKey

– Key must be a random bit sequence as long as message

• Idea: replace “random” with “pseudo-random”

– Use a pseudo-random number generator (PRNG)

– PRNG takes a short, truly random secret seed and
expands it into a long “random-looking” sequence
• E.g., 128-bit seed into a 106-bit

pseudo-random sequence

• Ciphertext(Key,Msg)=MsgPRNG(Key)

– Message processed bit by bit (unlike block cipher)

10/18/2019 CSE 484 / CSE M 584 16

No efficient algorithm can tell
this sequence from truly random

Block Ciphers

• Operates on a single chunk (“block”) of plaintext
– For example, 64 bits for DES, 128 bits for AES

– Each key defines a different permutation

– Same key is reused for each block (can use short keys)

10/18/2019 CSE 484 / CSE M 584 17

Plaintext

Ciphertext

block
cipherKey

Keyed Permutation

• Not just shuffling of input bits!

– Suppose plaintext = “111”.
Then “111” is not the only
possible ciphertext!

• Instead:

– Permutation of possible outputs

– For N-bit input, 2N! possible permutations

– Use secret key to pick a permutation

10/18/2019 CSE 484 / CSE M 584 18

Plaintext

Ciphertext

block
cipherKey

Example: With 3-bit Blocks

10/18/2019 CSE 484 / CSE M 584 - Autumn 2019 19

Input Output

000 111

001 101

010 001

011 000

100 110

101 010

110 100

111 011

Key = 0000000

Input Output

000 000

001 101

010 010

011 001

100 100

101 011

110 111

111 110

Key = 0000001

Input Output

000 001

001 000

010 010

011 011

100 111

101 101

110 100

111 110

Key = 0000010

…

Block Cipher Security

• Result should look like a random permutation on
the inputs
– Recall: not just shuffling bits. N-bit block cipher

permutes over 2N inputs.

• Only computational guarantee of secrecy
– Not impossible to break, just very expensive

• If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

– Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

10/18/2019 CSE 484 / CSE M 584 20

Block Cipher Operation (Simplified)

10/18/2019 CSE 484 / CSE M 584 21

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking”way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Standard Block Ciphers

• DES: Data Encryption Standard

– Feistel structure: builds invertible function using non-
invertible ones

– Invented by IBM, issued as federal standard in 1977

– 64-bit blocks, 56-bit key + 8 bits for parity

10/18/2019 CSE 484 / CSE M 584 22

DES and 56 bit keys

• 56 bit keys are quite short

• 1999: EFF DES Crack + distributed machines
– < 24 hours to find DES key

• DES ---> 3DES
– 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

10/18/2019 CSE 484 / CSE M 584 23

Standard Block Ciphers

• DES: Data Encryption Standard
– Feistel structure: builds invertible function using non-

invertible ones

– Invented by IBM, issued as federal standard in 1977

– 64-bit blocks, 56-bit key + 8 bits for parity

• AES: Advanced Encryption Standard
– New federal standard as of 2001

• NIST: National Institute of Standards & Technology

– Based on the Rijndael algorithm
• Selected via an open process

– 128-bit blocks, keys can be 128, 192 or 256 bits

10/18/2019 CSE 484 / CSE M 584 24

Encrypting a Large Message

• So, we have got a good block cipher, but our
plaintext is larger than 128-bit block size

• What should we do?

10/18/2019 CSE 484 / CSE M 584 25

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext

Electronic Code Book (ECB) Mode

10/18/2019 CSE 484 / CSE M 584 26

p1 p2 p3 p4 p5

c1 c2 c3 c4 c5

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

• Identical blocks of plaintext produce identical blocks of ciphertext
• No integrity checks: can mix and match blocks

Information Leakage in ECB Mode

10/18/2019 CSE 484 / CSE M 584 27

Encrypt in ECB mode

[Wikipedia]

